On rejected arguments and implicit conflicts: The hidden power of argumentation semantics

Abstract Abstract argumentation frameworks ( af s) are one of the most studied formalisms in AI and are formally simple tools to model arguments and their conflicts. The evaluation of an af yields extensions (with respect to a semantics) representing alternative acceptable sets of arguments. For many of the available semantics two effects can be observed: there exist arguments in the given af that do not appear in any extension (rejected arguments); there exist pairs of arguments that do not occur jointly in any extension, albeit there is no explicit conflict between them in the given af (implicit conflicts). In this paper, we investigate the question whether these situations are only a side-effect of particular af s, or whether rejected arguments and implicit conflicts contribute to the expressiveness of the actual semantics. We do so by introducing two subclasses of af s, namely compact and analytic frameworks. The former class contains af s that do not contain rejected arguments with respect to a semantics at hand; af s from the latter class are free of implicit conflicts for a given semantics. Frameworks that are contained in both classes would be natural candidates towards normal forms for af s since they minimize the number of arguments on the one hand, and on the other hand maximize the information on conflicts, a fact that might help argumentation systems to evaluate af s more efficiently. Our main results show that under stable, preferred, semi-stable, and stage semantics neither of the classes is able to capture the full expressive power of these semantics; we thus also refute a recent conjecture by Baumann et al. on implicit conflicts. Moreover, we give a detailed complexity analysis for the problem of deciding whether an af is compact, resp. analytic. Finally, we also study the signature of these subclasses for the mentioned semantics and shed light on the question under which circumstances an arbitrary framework can be transformed into an equivalent compact, resp. analytic, af .

[1]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[2]  Stefan Woltran,et al.  Complexity-sensitive decision procedures for abstract argumentation , 2012, Artif. Intell..

[3]  Hannes Strass The Relative Expressiveness of Abstract Argumentation and Logic Programming , 2015, AAAI.

[4]  Thomas Linsbichler,et al.  Characteristics of multiple viewpoints in abstract argumentation , 2014, Artif. Intell..

[5]  Martin Diller,et al.  An Extension-Based Approach to Belief Revision in Abstract Argumentation , 2015, IJCAI.

[6]  Hannes Strass,et al.  Open Problems in Abstract Argumentation , 2015, Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation.

[7]  Sébastien Konieczny,et al.  On the Revision of Argumentation Systems: Minimal Change of Arguments Statuses , 2014, KR.

[8]  Inês Lynce,et al.  Conflict-Driven Clause Learning SAT Solvers , 2009, Handbook of Satisfiability.

[9]  Pietro Baroni,et al.  A systematic classification of argumentation frameworks where semantics agree , 2008, COMMA.

[10]  Hannes Strass,et al.  On the Maximal and Average Numbers of Stable Extensions , 2013, TAFA.

[11]  Thomas Linsbichler,et al.  The Hidden Power of Abstract Argumentation Semantics , 2015, TAFA.

[12]  Ringo Baumann,et al.  Splitting an Argumentation Framework , 2011, LPNMR.

[13]  Wolfgang Dvorák Computational Aspects of Abstract Argumentation , 2012 .

[14]  Paul E. Dunne,et al.  Semi-stable semantics , 2006, J. Log. Comput..

[15]  Pietro Baroni,et al.  On the resolution-based family of abstract argumentation semantics and its grounded instance , 2011, Artif. Intell..

[16]  Hannes Strass,et al.  Summary Report of The First International Competition on Computational Models of Argumentation , 2016, AI Mag..

[17]  Pierre Marquis,et al.  Symmetric Argumentation Frameworks , 2005, ECSQARU.

[18]  Martin Caminada,et al.  On the evaluation of argumentation formalisms , 2007, Artif. Intell..

[19]  P. Baroni,et al.  Characterizing defeat graphs where argumentation semantics agree , 2007 .

[20]  Min-Jen Jou,et al.  Trees with the second largest number of maximal independent sets , 2009, Discret. Math..

[21]  Jerrold R. Griggs,et al.  The number of maximal independent sets in a connected graph , 1988, Discret. Math..

[22]  Bart Verheij,et al.  Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages , 1999 .

[23]  Stefan Woltran,et al.  Answer-set programming encodings for argumentation frameworks , 2010, Argument Comput..

[24]  J. Moon,et al.  On cliques in graphs , 1965 .

[25]  Serena Villata,et al.  System Descriptions of the First International Competition on Computational Models of Argumentation (ICCMA'15) , 2015, ArXiv.

[26]  Wolfgang Dvo Comparing the Expressiveness of Argumentation Semantics , 2015 .

[27]  Pietro Baroni,et al.  On principle-based evaluation of extension-based argumentation semantics , 2007, Artif. Intell..

[28]  Hannes Strass,et al.  Compact Argumentation Frameworks , 2014, ECAI.

[29]  Xueliang Li,et al.  Graphs with the second largest number of maximal independent sets , 2008, Discret. Math..

[30]  Ur Informationssysteme,et al.  Answer-Set Programming Encodings for Argumentation Frameworks , 2008 .

[31]  Pietro Baroni,et al.  An introduction to argumentation semantics , 2011, The Knowledge Engineering Review.

[32]  Trevor J. M. Bench-Capon,et al.  Coherence in finite argument systems , 2002, Artif. Intell..

[33]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[34]  Paul E. Dunne,et al.  The computational complexity of ideal semantics , 2009, Artif. Intell..

[35]  Stefan Woltran,et al.  Complexity of semi-stable and stage semantics in argumentation frameworks , 2010, Inf. Process. Lett..

[36]  Ringo Baumann,et al.  Infinite Argumentation Frameworks - On the Existence and Uniqueness of Extensions , 2015, Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation.

[37]  Sjur Dyrkolbotn How to Argue for Anything: Enforcing Arbitrary Sets of Labellings using AFs , 2014, KR.

[38]  Yannis Dimopoulos,et al.  Graph theoretical structures in logic programs and default theories , 1996 .

[39]  Paul E. Dunne,et al.  Computational properties of argument systems satisfying graph-theoretic constraints , 2007, Artif. Intell..