Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion

SUMMARY By specifying a discrete matrix formulation for the frequency^space modelling problem for linear partial diierential equations (‘FDM’ methods), it is possible to derive a matrix formalism for standard iterative non-linear inverse methods, such as the gradient (steepest descent) method, the Gauss^Newton method and the full Newton method. We obtain expressions for each of these methods directly from the discrete FDM method, and we refer to this approach as frequency-domain inversion (FDI).The FDI methods are based on simple notions of matrix algebra, but are nevertheless very general. The FDI methods only require that the original partial diierential equations can be expressed as a discrete boundary-value problem (that is as a matrix problem). Simple algebraic manipulation of the FDI expressions allows us to compute the gradient of the mis¢t function using only three forward modelling steps (one to compute the residuals, one to backpropagate the residuals, and a ¢nal computation to compute a step length). This result is exactly analogous to earlier backpropagation methods derived using methods of functional analysis for continuous problems. Following from the simplicity of this result, we give FDI expressions for the approximate Hessian matrix used in the Gauss^Newton method, and the full Hessian matrix used in the full Newton method. In a new development, we show that the additional term in the exact Hessian, ignored in the Gauss^Newton method, can be e⁄ciently computed using a backpropagation approach similar to that used to compute the gradient vector. The additional term in the Hessian predicts the degradation of linearized inversions due to the presence of ¢rst-order multiples (such as free-surface multiples in seismic data). Another interpretation is that this term predicts changes in the gradient vector due to second-order non-linear eiects. In a numerical test, the Gauss^Newton and full Newton methods prove eiective in helping to solve the di⁄cult non-linear problem of extracting a smooth background velocity model from surface seismic-re£ection data.

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  J. Hagedoorn,et al.  A process of seismic reflection interpretation , 1954 .

[3]  Stephen A. Jurovics,et al.  The Adjoint Method and Its Application to Trajectory Optimization , 1962 .

[4]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[5]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[6]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[7]  W. Rodi A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .

[8]  M. Oristaglio,et al.  INVERSION OF SURFACE AND BOREHOLE ELECTROMAGNETIC DATA FOR TWO‐DIMENSIONAL ELECTRICAL CONDUCTIVITY MODELS* , 1980 .

[9]  A. Devaney A filtered backpropagation algorithm for diffraction tomography. , 1982, Ultrasonic imaging.

[10]  D. Bertsekas Enlarging the region of convergence of Newton's method for constrained optimization , 1982 .

[11]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[12]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[13]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[14]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[15]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[16]  P. Williamson,et al.  Tomographic Inversion In Reflection Seismology , 1990 .

[17]  P. Lailly,et al.  Pre-stack inversion of a 1-D medium , 1986, Proceedings of the IEEE.

[18]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[19]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[20]  M. Toksöz,et al.  Diffraction tomography and multisource holography applied to seismic imaging , 1987 .

[21]  F. Santosa,et al.  Inversion of band-limited reflection seismograms using stacking velocities as constraints , 1987 .

[22]  B. Kennett,et al.  Subspace methods for large inverse problems with multiple parameter classes , 1988 .

[23]  Peter Mora,et al.  Inversion = Migration + Tomography , 1988, Shell Conference.

[24]  Kurt J. Marfurt,et al.  The Future of Iterative Modeling in Geophysical Exploration , 1989 .

[25]  Roel Snieder,et al.  Retrieving both the impedance contrast and background velocity: A global strategy for the seismic reflection problem , 1989 .

[26]  A. Tarantola,et al.  Practical aspects of an elastic migration/inversion of crosshole data for reservoir characterization: A Paris basin example , 1989 .

[27]  R. Snieder A perturbative analysis of non-linear inversion , 1990 .

[28]  R. Pratt Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .

[29]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[30]  Mark Noble,et al.  Robust elastic nonlinear waveform inversion: Application to real data , 1990 .

[31]  Wafik B. Beydoun,et al.  A simultaneous inversion for background velocity and impedance maps , 1990 .

[32]  North Sea reservoir description: Benefits of an elastic migration/inversion applied to multicomponent vertical seismic profile data , 1990 .

[33]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[34]  Mrinal K. Sen,et al.  Nonlinear one-dimensional seismic waveform inversion using simulated annealing , 1991 .

[35]  R. Pratt,et al.  Combining wave-equation imaging with traveltime tomography to form high-resolution images from crosshole data , 1991 .

[36]  F. Delprat-Jannaud,et al.  WHAT INFORMATION ON THE EARTH MODEL DO REFLECTION TRAVEL TIMES PROVIDE , 1992 .

[37]  J. Virieux,et al.  Iterative asymptotic inversion in the acoustic approximation , 1992 .

[38]  V. Dimri,et al.  Deconvolution and Inverse Theory: Application to Geophysical Problems , 1992 .

[39]  R. G. Pratt,et al.  Anisotropic velocity tomography: A case study in a near-surface rock mass , 1993 .

[40]  Yanghua Wang,et al.  TOMOGRAPHIC INVERSION OF REFLECTION SEISMIC AMPLITUDE DATA FOR VELOCITY VARIATION , 1995 .

[41]  Fault Delineation by Wavefield Inversion of Cross-Borehole Seismic Data , 1995 .

[42]  P. Williamson,et al.  Frequency-domain acoustic-wave modeling and inversion of crosshole data; Part 1, 2.5-D modeling method , 1995 .

[43]  Guy Chavent,et al.  Determination of background velocities by multiple migration fitting , 1995 .

[44]  R G Pratt,et al.  Are our parameter estimators biased? The significance of finite-difference regularization operators , 1995 .

[45]  G. McMechan,et al.  3-D prestack full-wavefield inversion , 1995 .

[46]  Z. M. Song,et al.  Frequency-domain acoustic-wave modeling and inversion of crosshole data; Part II, Inversion method, synthetic experiments and real-data results , 1995 .

[47]  S. L. Bégat,et al.  Sensitivity of qP-wave traveltimes and polarization vectors to heterogeneity, anisotropy and interfaces , 1995 .

[48]  G. Schuster,et al.  Acoustic wave-equation traveltime and waveform inversion of crosshole seismic data , 1995 .

[49]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[50]  Michael Jervis,et al.  Prestack migration velocity estimation using nonlinear methods , 1996 .

[51]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[52]  Automatic background velocity estimation in 2D media , 1996 .

[53]  Analysis of reflection traveltimes in 3-D transversely isotropic heterogeneous media , 1997 .