Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion
暂无分享,去创建一个
[1] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[2] J. Hagedoorn,et al. A process of seismic reflection interpretation , 1954 .
[3] Stephen A. Jurovics,et al. The Adjoint Method and Its Application to Trajectory Optimization , 1962 .
[4] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[5] E B Lee,et al. Foundations of optimal control theory , 1967 .
[6] Edward L. Wilson,et al. Numerical methods in finite element analysis , 1976 .
[7] W. Rodi. A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .
[8] M. Oristaglio,et al. INVERSION OF SURFACE AND BOREHOLE ELECTROMAGNETIC DATA FOR TWO‐DIMENSIONAL ELECTRICAL CONDUCTIVITY MODELS* , 1980 .
[9] A. Devaney. A filtered backpropagation algorithm for diffraction tomography. , 1982, Ultrasonic imaging.
[10] D. Bertsekas. Enlarging the region of convergence of Newton's method for constrained optimization , 1982 .
[11] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[12] A. Tarantola,et al. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .
[13] K. Marfurt. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .
[14] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation , 1984 .
[15] A. Tarantola,et al. Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .
[16] P. Williamson,et al. Tomographic Inversion In Reflection Seismology , 1990 .
[17] P. Lailly,et al. Pre-stack inversion of a 1-D medium , 1986, Proceedings of the IEEE.
[18] A. Tarantola. A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .
[19] P. Mora. Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .
[20] M. Toksöz,et al. Diffraction tomography and multisource holography applied to seismic imaging , 1987 .
[21] F. Santosa,et al. Inversion of band-limited reflection seismograms using stacking velocities as constraints , 1987 .
[22] B. Kennett,et al. Subspace methods for large inverse problems with multiple parameter classes , 1988 .
[23] Peter Mora,et al. Inversion = Migration + Tomography , 1988, Shell Conference.
[24] Kurt J. Marfurt,et al. The Future of Iterative Modeling in Geophysical Exploration , 1989 .
[25] Roel Snieder,et al. Retrieving both the impedance contrast and background velocity: A global strategy for the seismic reflection problem , 1989 .
[26] A. Tarantola,et al. Practical aspects of an elastic migration/inversion of crosshole data for reservoir characterization: A Paris basin example , 1989 .
[27] R. Snieder. A perturbative analysis of non-linear inversion , 1990 .
[28] R. Pratt. Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .
[29] R. Pratt,et al. INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .
[30] Mark Noble,et al. Robust elastic nonlinear waveform inversion: Application to real data , 1990 .
[31] Wafik B. Beydoun,et al. A simultaneous inversion for background velocity and impedance maps , 1990 .
[33] William W. Symes,et al. Velocity inversion by differential semblance optimization , 1991 .
[34] Mrinal K. Sen,et al. Nonlinear one-dimensional seismic waveform inversion using simulated annealing , 1991 .
[35] R. Pratt,et al. Combining wave-equation imaging with traveltime tomography to form high-resolution images from crosshole data , 1991 .
[36] F. Delprat-Jannaud,et al. WHAT INFORMATION ON THE EARTH MODEL DO REFLECTION TRAVEL TIMES PROVIDE , 1992 .
[37] J. Virieux,et al. Iterative asymptotic inversion in the acoustic approximation , 1992 .
[38] V. Dimri,et al. Deconvolution and Inverse Theory: Application to Geophysical Problems , 1992 .
[39] R. G. Pratt,et al. Anisotropic velocity tomography: A case study in a near-surface rock mass , 1993 .
[40] Yanghua Wang,et al. TOMOGRAPHIC INVERSION OF REFLECTION SEISMIC AMPLITUDE DATA FOR VELOCITY VARIATION , 1995 .
[41] Fault Delineation by Wavefield Inversion of Cross-Borehole Seismic Data , 1995 .
[42] P. Williamson,et al. Frequency-domain acoustic-wave modeling and inversion of crosshole data; Part 1, 2.5-D modeling method , 1995 .
[43] Guy Chavent,et al. Determination of background velocities by multiple migration fitting , 1995 .
[44] R G Pratt,et al. Are our parameter estimators biased? The significance of finite-difference regularization operators , 1995 .
[45] G. McMechan,et al. 3-D prestack full-wavefield inversion , 1995 .
[46] Z. M. Song,et al. Frequency-domain acoustic-wave modeling and inversion of crosshole data; Part II, Inversion method, synthetic experiments and real-data results , 1995 .
[47] S. L. Bégat,et al. Sensitivity of qP-wave traveltimes and polarization vectors to heterogeneity, anisotropy and interfaces , 1995 .
[48] G. Schuster,et al. Acoustic wave-equation traveltime and waveform inversion of crosshole seismic data , 1995 .
[49] C. Bunks,et al. Multiscale seismic waveform inversion , 1995 .
[50] Michael Jervis,et al. Prestack migration velocity estimation using nonlinear methods , 1996 .
[51] C. Shin,et al. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .
[52] Automatic background velocity estimation in 2D media , 1996 .
[53] Analysis of reflection traveltimes in 3-D transversely isotropic heterogeneous media , 1997 .