Some closed formulas for canonical bases of Fock spaces

We give some closed formulas for certain vectors of the canonical bases of the Fock space representation of U_v(sl^_n). As a result, a combinatorial description of certain parabolic Kazhdan-Lusztig polynomials for affine type A is obtained.

[1]  R. Kessar,et al.  Symmetric Groups, Wreath Products, Morita Equivalences, and Broué's Abelian Defect Group Conjecture , 2002 .

[2]  Du Jie THE q-SCHUR ALGEBRA , 2000 .

[3]  M. Kashiwara,et al.  Parabolic Kazhdan-Lusztig polynomials and Schubert varieties , 1999, math/9908153.

[4]  Séverine Leidwanger,et al.  Basic Representations ofA(1)n−1andA(2)2nand the Combinatorics of Partitions☆ , 1999 .

[5]  B. Leclerc,et al.  Schur Functions and Affine Lie Algebras , 1998 .

[6]  E. Vasserot,et al.  On the decomposition matrices of the quantized Schur algebra , 1998, math/9803023.

[7]  T. Jost Morita Equivalence for Blocks of Hecke Algebras of Symmetric Groups , 1997 .

[8]  T. Jost Morita equivalence for blocks of finite general linear groups , 1996 .

[9]  Alain Lascoux,et al.  Hecke algebras at roots of unity and crystal bases of quantum affine algebras , 1996 .

[10]  G. James,et al.  Hecke Algebras of TypeAwithq=−1 , 1996 .

[11]  J. Thibon,et al.  Canonical bases of q-deformed Fock spaces , 1996, q-alg/9602025.

[12]  S. Ariki On the decomposition numbers of the Hecke algebra of $G(m, 1, n)$ , 1996 .

[13]  A. Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995, q-alg/9512031.

[14]  Eugene Stern Semi-Infinite Wedges and Vertex Operators , 1995, q-alg/9504013.

[15]  T. Miwa,et al.  Decomposition ofq-deformed Fock spaces , 1995, q-alg/9508006.

[16]  Masaki Kashiwara,et al.  Global crystal bases of quantum groups , 1993 .

[17]  J. Scopes Cartan matrices and Morita equivalence for blocks of the symmetric groups , 1991 .

[18]  M. Kashiwara,et al.  On crystal bases of the $Q$-analogue of universal enveloping algebras , 1991 .

[19]  Tetsuji Miwa,et al.  Crystal base for the basic representation of $$U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))$$ , 1990 .

[20]  Masaki Kashiwara,et al.  Crystalizing theq-analogue of universal enveloping algebras , 1990 .

[21]  George Lusztig,et al.  Canonical bases arising from quantized enveloping algebras , 1990 .

[22]  Takahiro Hayashi,et al.  Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras , 1990 .

[23]  Tetsuji Miwa,et al.  Crystal base for the basic representation of , 1990 .

[24]  R. Dipper,et al.  The (Q, q)‐Schur Algebra , 1989, q-alg/9701024.

[25]  Dennis E. White,et al.  A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.

[26]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[27]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[28]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[29]  Donald C. Knutson,et al.  Lambda-Rings and the Representation Theory of the Symmetric Group , 1973 .