Construction of an Eulerian atmospheric dispersion model based on the advection algorithm of M. Galperin: dynamic cores v.4 and 5 of SILAM v.5.5

Introduction Conclusions References Tables Figures

[1]  M. Sofiev,et al.  The long-range transport of ammonia and ammonium in the Northern Hemisphere , 1998 .

[2]  C. Walcek Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection , 2000 .

[3]  M. V. Galperin Approaches for Improving the Numerical Solution of the Advection Equation , 1999 .

[4]  P. Lauritzen,et al.  Atmospheric Transport Schemes: Desirable Properties and a Semi-Lagrangian View on Finite-Volume Discretizations , 2011 .

[5]  Eric Deleersnijder,et al.  Advection schemes for unstructured grid ocean modelling , 2004 .

[6]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[7]  Andreas Bott The Monotone Area-preserving Flux-Form Advection Algorithm: Reducing the Time-splitting Error in Two-Dimensional Flow Fields , 1993 .

[8]  Dimiter Syrakov,et al.  Some fast variants of TRAP scheme for solving advection equation - comparison with other schemes , 2008, Comput. Math. Appl..

[9]  Ari Asmi,et al.  SALSA – a Sectional Aerosol module for Large Scale Applications , 2007 .

[10]  C. Walcek,et al.  A simple but accurate mass conservative, peak-preserving, mixing ratio bounded advection algorithm with FORTRAN code , 1998 .

[11]  M. Sofiev,et al.  A methodology for evaluation of vertical dispersion and dry deposition of atmospheric aerosols , 2012 .

[12]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[13]  A. Bott Monotone Flux Limitation in the Area-preserving Flux-form Advection Algorithm , 1992 .

[14]  Leiming Zhang,et al.  Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models , 2010 .

[15]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[16]  Quentin F. Stout,et al.  Block-Structured Adaptive Grids on the Sphere: Advection Experiments , 2006 .

[17]  Leiming Zhang,et al.  A size-segregated particle dry deposition scheme for an atmospheric aerosol module , 2001 .

[18]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[19]  A. Bott A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes , 1989 .

[20]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[21]  M. Prather Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .

[22]  Eugene Genikhovich,et al.  Diagnosing the Surface Layer Parameters for Dispersion Models within the Meteorological-to-Dispersion Modeling Interface , 2010 .

[23]  P. Smolarkiewicz The Multi-Dimensional Crowley Advection Scheme , 1982 .

[24]  Jaakko Kukkonen,et al.  A review of operational, regional-scale, chemical weather forecasting models in Europe , 2012 .

[25]  Mark A. Taylor,et al.  A standard test case suite for two-dimensional linear transport on the sphere , 2012 .

[26]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[27]  I. Karol Calculation of planetary distributions of radon and its long-lived daughter concentrations in the troposphere and lower stratosphere , 1970 .

[28]  R. Yamartino Nonnegative, Conserved Scalar Transport Using Grid-Cell-centered, Spectrally Constrained Blackman Cubics for Applications on a Variable-Thickness Mesh , 1993 .

[29]  M. Sofiev,et al.  Long-term modelling of airborne pollution within the Northern Hemisphere , 1995 .

[30]  W. Crowley Second-order numerical advection , 1967 .

[31]  Mikhail Sofiev,et al.  Extended resistance analogy for construction of the vertical diffusion scheme for dispersion models , 2002 .

[32]  W. B. VanderHeyden,et al.  A general-purpose finite-volume advection scheme for continuous and discontinuous fields on unstructured grids , 2002 .

[33]  Shian-Jiann Lin,et al.  An explicit flux‐form semi‐lagrangian shallow‐water model on the sphere , 1997 .

[34]  Janusz A. Pudykiewicz,et al.  Preliminary results From a partial LRTAP model based on an existing meteorological forecast model , 1985 .

[35]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[36]  L. Prahm,et al.  Long-range transmission of pollutants simulated by a two-dimensional pseudospectral dispersion model , 1977 .

[37]  G. Russell,et al.  A New Finite-Differencing Scheme for the Tracer Transport Equation , 1981 .

[38]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[39]  Christiane Jablonowski,et al.  Adaptive grids in weather and climate modeling. , 2004 .

[40]  Peter H. Lauritzen,et al.  A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics , 2013 .

[41]  Harold Ritchie,et al.  Application of the Semi-Lagrangian Method to a Spectral Model of the Shallow Water Equations , 1988 .

[42]  W. Slinn,et al.  Predictions for particle deposition to vegetative canopies , 1982 .

[43]  Guriĭ Ivanovich Marchuk,et al.  Adjoint Equations and Analysis of Complex Systems , 1995 .

[44]  I Lagzi,et al.  Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model. , 2004, Journal of environmental radioactivity.

[45]  M. Galperin,et al.  On some explicit advection schemes for dispersion modelling application , 2000 .

[46]  James R. Mahoney,et al.  Numerical Modeling of Advection and Diffusion of Urban Area Source Pollutants , 1972 .

[47]  L. Prahm,et al.  A method for numerical solution of the advection equation , 1974 .

[48]  B. P. Leonard Stability of explicit advection schemes. The balance point location rule , 2002 .

[49]  Nikolaos Nikiforakis,et al.  A condensed-mass advection based model for the simulation of liquid polar stratospheric clouds , 2002 .

[50]  W. P. Crowley,et al.  NUMERICAL ADVECTION EXPERIMENTS1 , 1968 .

[51]  M. Sofiev A model for the evaluation of long-term airborne pollution transport at regional and continental scales , 2000 .

[52]  Mark A. Taylor,et al.  A STANDARD TEST CASE SUITE FOR TWO-DIMENSIONAL LINEAR TRANSPORT ON THE SPHERE: RESULTS FROM A COLLECTION OF STATE-OF-THE-ART SCHEMES , 2013 .

[53]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[54]  A. Venkatram,et al.  The electrical analogy does not apply to modeling dry deposition of particles , 1999 .

[55]  D. Richtmyer,et al.  A Survey of Difference Methods for Non-Steady Fluid Dynamics , 1962 .

[56]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[57]  M. Sofiev,et al.  A Construction and Evaluation of Eulerian Dynamic Core for the Air Quality and Emergency Modelling System SILAM , 2008 .

[58]  Z. Zlatev,et al.  NUMERICAL TREATMENT OF LARGE-SCALE AIR POLLUTION MODELS , 1988 .

[59]  Jafar Arkani-Hamed,et al.  An improved second moment method for solution of pure advection problems , 2000 .