Robust Linear Regression via $\ell_0$ Regularization

Linear regression in the presence of outliers is an important problem and is challenging as the support of outliers is not known beforehand. Many robust estimators solve this problem via explicitly or implicitly assuming that outliers are sparse and result in large observation errors. We propose an algorithm for robust outlier support identification (AROSI) utilizing a novel objective function with <inline-formula><tex-math notation="LaTeX">$\ell _{0}$</tex-math> </inline-formula>-“norm” regularization which models the sparsity of outliers. The optimization procedure naturally utilizes the large observation error assumption of outliers and directly operates on the <inline-formula> <tex-math notation="LaTeX">$\ell _{0}$</tex-math></inline-formula>-“norm” and is guaranteed to converge. When only sparse outliers are present (no dense inlier noise), we show that, under certain model and algorithm parameter settings, AROSI can recover the solution exactly. In the case, where both dense inlier noise and sparse outliers are present, we prove that the estimation error is bounded. Extensive empirical comparisons with state-of-the-art methods demonstrate the advantage of the proposed method.

[1]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[2]  Rama Chellappa,et al.  IEEE TRANSACTIONS ON SIGNAL PROCESSING 1 Analysis of Sparse Regularization Based Robust Regression Approaches , 2022 .

[3]  William Dumouchel,et al.  Integrating a robust option into a multiple regression computing environment , 1992 .

[4]  Salvador A. Flores,et al.  Sharp non-asymptotic performance bounds for $$\ell _1$$ℓ1 and Huber robust regression estimators , 2015 .

[5]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[6]  Trac D. Tran,et al.  Robust Lasso With Missing and Grossly Corrupted Observations , 2011, IEEE Transactions on Information Theory.

[7]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[8]  Sergios Theodoridis,et al.  Robust Linear Regression Analysis— A Greedy Approach , 2014, IEEE Transactions on Signal Processing.

[9]  Stephen P. Boyd,et al.  Portfolio optimization with linear and fixed transaction costs , 2007, Ann. Oper. Res..

[10]  Richard G. Baraniuk,et al.  Exact signal recovery from sparsely corrupted measurements through the Pursuit of Justice , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[11]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[12]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[13]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[14]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[15]  P. J. Huber The 1972 Wald Lecture Robust Statistics: A Review , 1972 .

[16]  Yiyuan She,et al.  Outlier Detection Using Nonconvex Penalized Regression , 2010, ArXiv.

[17]  Prateek Jain,et al.  Robust Regression via Hard Thresholding , 2015, NIPS.

[18]  Richard G. Baraniuk,et al.  Stable Restoration and Separation of Approximately Sparse Signals , 2011, ArXiv.

[19]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[20]  Helmut Bölcskei,et al.  Recovery of Sparsely Corrupted Signals , 2011, IEEE Transactions on Information Theory.

[21]  Yoav Sharon,et al.  Minimum sum of distances estimator: Robustness and stability , 2009, 2009 American Control Conference.

[22]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[23]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[24]  Bhaskar D. Rao,et al.  Algorithms for robust linear regression by exploiting the connection to sparse signal recovery , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[25]  John Wright,et al.  Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.

[26]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[27]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[28]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[29]  Jean-Jacques Fuchs,et al.  An inverse problem approach to robust regression , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[30]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[31]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[32]  Rama Chellappa,et al.  Robust regression using sparse learning for high dimensional parameter estimation problems , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[33]  Emmanuel J. Candès,et al.  Highly Robust Error Correction byConvex Programming , 2006, IEEE Transactions on Information Theory.

[34]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[35]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[36]  Salvador Flores Sharp non-asymptotic performance bounds for 1 and Huber robust regression estimators , 2015 .

[37]  Manfred W. Padberg,et al.  Alternative Methods of Linear Regression , 2001 .

[38]  MaYi,et al.  Dense error correction via l1-minimization , 2010 .

[39]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[40]  Wotao Yin,et al.  Sparse Signal Reconstruction via Iterative Support Detection , 2009, SIAM J. Imaging Sci..

[41]  Georgios B. Giannakis,et al.  From Sparse Signals to Sparse Residuals for Robust Sensing , 2011, IEEE Transactions on Signal Processing.

[42]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[43]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[44]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[45]  Trac D. Tran,et al.  Exact Recoverability From Dense Corrupted Observations via $\ell _{1}$-Minimization , 2011, IEEE Transactions on Information Theory.

[46]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[47]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .