Iterative Reconstruction of Rank-One Matrices in Noise

We consider the problem of estimating a rank-one matrix in Gaussian noise under a probabilistic model for the left and right factors of the matrix. The probabilistic model can impose constraints on the factors including sparsity and positivity that arise commonly in learning problems. We propose a family of algorithms that reduce the problem to a sequence of scalar estimation computations. These algorithms are similar to approximate message passing techniques based on Gaussian approximations of loopy belief propagation that have been used recently in compressed sensing. Leveraging analysis methods by Bayati and Montanari, we show that the asymptotic behavior of the algorithm is described by a simple scalar equivalent model, where the distribution of the estimates at each iteration is identical to certain scalar estimates of the variables in Gaussian noise. Moreover, the effective Gaussian noise level is described by a set of state evolution equations. The proposed approach to deriving algorithms thus provides a computationally simple and general method for rank-one estimation problems with a precise analysis in certain high-dimensional settings.

[1]  Ayaka Sakata,et al.  Sample complexity of Bayesian optimal dictionary learning , 2013, 2013 IEEE International Symposium on Information Theory.

[2]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[3]  Shlomo Shamai,et al.  Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error , 2010, IEEE Transactions on Information Theory.

[4]  Sundeep Rangan,et al.  Scalable Inference for Neuronal Connectivity from Calcium Imaging , 2014, NIPS.

[5]  Andrea Montanari,et al.  Information-theoretically optimal sparse PCA , 2014, 2014 IEEE International Symposium on Information Theory.

[6]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[7]  I. Johnstone,et al.  Minimax Risk over l p-Balls for l q-error , 1994 .

[8]  Andrea Montanari,et al.  Analysis of Belief Propagation for Non-Linear Problems: The Example of CDMA (or: How to Prove Tanaka's Formula) , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[9]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: II. analysis and validation , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[10]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[11]  片山 徹 Subspace methods for system identification , 2005 .

[12]  Volkan Cevher,et al.  Compressive sensing under matrix uncertainties: An Approximate Message Passing approach , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[13]  Sundeep Rangan,et al.  On the convergence of approximate message passing with arbitrary matrices , 2014, 2014 IEEE International Symposium on Information Theory.

[14]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[15]  Sergio Verdú,et al.  Randomly spread CDMA: asymptotics via statistical physics , 2005, IEEE Transactions on Information Theory.

[16]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[17]  Adel Javanmard,et al.  State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling , 2012, ArXiv.

[18]  Zhongjie Wang,et al.  Improved Generalized Belief Propagation for Vision Processing , 2011 .

[19]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[20]  Giuseppe Caire,et al.  Iterative multiuser joint decoding: Unified framework and asymptotic analysis , 2002, IEEE Trans. Inf. Theory.

[21]  I. Johnstone,et al.  Minimax risk overlp-balls forlp-error , 1994 .

[22]  Philip Schniter,et al.  Expectation-maximization Bernoulli-Gaussian approximate message passing , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[23]  Sundeep Rangan,et al.  Neural Reconstruction with Approximate Message Passing (NeuRAMP) , 2011, NIPS.

[24]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[25]  Volkan Cevher,et al.  Fixed Points of Generalized Approximate Message Passing With Arbitrary Matrices , 2016, IEEE Transactions on Information Theory.

[26]  Florent Krzakala,et al.  Phase diagram and approximate message passing for blind calibration and dictionary learning , 2013, 2013 IEEE International Symposium on Information Theory.

[27]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[28]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[29]  Sundeep Rangan,et al.  Iterative estimation of constrained rank-one matrices in noise , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[30]  Dongning Guo,et al.  Asymptotic Mean-Square Optimality of Belief Propagation for Sparse Linear Systems , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[31]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[32]  I. Jolliffe Principal Component Analysis , 2002 .

[33]  Toshiyuki Tanaka,et al.  A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.

[34]  Volkan Cevher,et al.  Bilinear Generalized Approximate Message Passing—Part II: Applications , 2014, IEEE Transactions on Signal Processing.

[35]  Florent Krzakala,et al.  On convergence of approximate message passing , 2014, 2014 IEEE International Symposium on Information Theory.

[36]  Tohru Katayama,et al.  Subspace Methods for System Identification , 2005 .

[37]  Sergio Verdú,et al.  Functional Properties of Minimum Mean-Square Error and Mutual Information , 2012, IEEE Transactions on Information Theory.

[38]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[39]  Zhi Ding Matrix outer-product decomposition method for blind multiple channel identification , 1997, IEEE Trans. Signal Process..

[40]  Volkan Cevher,et al.  Bilinear Generalized Approximate Message Passing—Part I: Derivation , 2013, IEEE Transactions on Signal Processing.

[41]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[42]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[43]  Andrea J. Goldsmith,et al.  Transmitter optimization and optimality of beamforming for multiple antenna systems , 2004, IEEE Transactions on Wireless Communications.

[44]  Chih-Chun Wang,et al.  Random Sparse Linear Systems Observed Via Arbitrary Channels: A Decoupling Principle , 2007, 2007 IEEE International Symposium on Information Theory.

[45]  I. Johnstone,et al.  On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.

[46]  Philip Schniter,et al.  Hyperspectral image unmixing via bilinear generalized approximate message passing , 2013, Defense, Security, and Sensing.

[47]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[48]  Jianhua Z. Huang,et al.  Sparse principal component analysis via regularized low rank matrix approximation , 2008 .

[49]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[50]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[51]  Dongning Guo,et al.  A single-letter characterization of optimal noisy compressed sensing , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[52]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[53]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[54]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[55]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[56]  Sundeep Rangan,et al.  Estimation with random linear mixing, belief propagation and compressed sensing , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[57]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[58]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[59]  Hongyuan Zha,et al.  Low-Rank Approximations with Sparse Factors I: Basic Algorithms and Error Analysis , 2001, SIAM J. Matrix Anal. Appl..

[60]  Jorge Cadima Departamento de Matematica Loading and correlations in the interpretation of principle compenents , 1995 .

[61]  Sundeep Rangan,et al.  Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing , 2009, IEEE Transactions on Information Theory.

[62]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .