New insights into nanomagnetism: spin-polarized scanning tunneling microscopy and spectroscopy studies

We perform low-temperature spin-polarized scanning tunneling microscopy (SP-STM) and spectroscopy measurements in magnetic fields to gain new insights into nanomagnetism. We use the magnetic field to change and control magnetizations of a sample and a magnetic tip, and measure the magnetic hysteresis loops of individual Co nano-islands on Cu(111). We also exploit the high spatial resolution of SP-STM in magnetic fields to measure maps of the differential conductance within a single Co nano-island. In connection with ab initio calculations, we find that the spin polarization is not homogeneous but spatially modulated within the nano-island. We ascribe the spatial variation of the spin polarization to spin-dependent electron confinement within the Co nano-island.

[1]  P. Bruno,et al.  Size-dependent surface states of strained cobalt nanoislands on Cu(111). , 2007, Physical review letters.

[2]  P. Bruno,et al.  Controlling the spin polarization of nanostructures on magnetic substrates. , 2006, Physical review letters.

[3]  R Wiesendanger,et al.  Shape-dependent thermal switching behavior of superparamagnetic nanoislands. , 2004, Physical review letters.

[4]  R. Wiesendanger,et al.  Spin-polarized scanning tunneling spectroscopy of nanoscale cobalt islands on Cu(111). , 2004, Physical review letters.

[5]  Rabe,et al.  Room temperature instability of Co/Cu(111). , 1994, Physical review letters.

[6]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[7]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[8]  S. Heinze,et al.  Spin-resolved electronic structure of nanoscale cobalt islands on Cu(111). , 2006, Physical review letters.

[9]  D. Eigler,et al.  Measurement of Fast Electron Spin Relaxation Times with Atomic Resolution , 2010, Science.

[10]  Miranda,et al.  Scanning-tunneling-microscopy study of the growth of cobalt on Cu(111). , 1993, Physical review. B, Condensed matter.

[11]  J. Kirschner,et al.  Revealing the 120 degrees antiferromagnetic Néel structure in real space: one monolayer Mn on Ag(111). , 2008, Physical review letters.

[12]  J. Kirschner,et al.  Characterization of tips for spin-polarized scanning tunneling microscopy , 2009 .

[13]  R. Berndt,et al.  ELECTRON CONFINEMENT TO NANOSCALE AG ISLANDS ON AG(111) : A QUANTITATIVE STUDY , 1998 .

[14]  K. Kern,et al.  Bilayer growth of nanoscale Co islands on Cu(111) , 2008 .

[15]  J. Kirschner,et al.  Spin-Polarized Scanning Tunneling Microscopy of Magnetic Structures and Antiferromagnetic Thin Films , 2007 .

[16]  D. Hamann,et al.  Theory and Application for the Scanning Tunneling Microscope , 1983 .

[17]  D. Eigler,et al.  Imaging standing waves in a two-dimensional electron gas , 1993, Nature.

[18]  S. Heinze,et al.  Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. , 2001, Physical review letters.

[19]  J. Kirschner,et al.  Spatial Modulation of Spin Polarization within a Single Co Island , 2010 .

[20]  J. Kirschner,et al.  Spin-Dependent Quantum Interference Within a Single Magnetic Nanostructure , 2010, Science.

[21]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[22]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[23]  S. Heinze,et al.  Real-space imaging of two-dimensional antiferromagnetism on the atomic scale , 2000, Science.

[24]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[25]  K. Kern,et al.  Surface states of cobalt nanoislands on Cu111. , 2003, Physical review letters.