Discrete Hirota's Equation in Quantum Integrable Models

The recent progress in revealing classical integrable structures in quantum models solved by Bethe ansatz is reviewed. Fusion relations for eigenvalues of quantum transfer matrices can be written in the form of classical Hirota's bilinear difference equation. This equation is also known as the completely discretized version of the 2D Toda lattice. We explain how one obtains the specific quantum results by solving the classical equation. The auxiliary linear problem for the Hirota equation is shown to generalize Baxter's T-Q relation.

[1]  Ovidiu Lipan,et al.  Quantum Integrable Models and Discrete Classical Hirota Equations , 1997 .

[2]  A. Zabrodin,et al.  Hirota’s difference equations , 1997 .

[3]  A. Zabrodin Bethe Ansatz and Classical Hirota Equations , 1996 .

[4]  S. Lukyanov,et al.  Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz , 1994, hep-th/9412229.

[5]  I. Krichever,et al.  Spin generalization of the Ruijsenaars-Schneider model, the non-Abelian 2D Toda chain, and representations of the Sklyanin algebra , 1995 .

[6]  A.Zabrodin,et al.  Spin generalization of the Ruijsenaars-Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra , 1995, hep-th/9505039.

[7]  J. Suzuki,et al.  Analytic Bethe ansatz for fundamental representations of Yangians , 1994, hep-th/9406180.

[8]  F. Nijhoff,et al.  Integrable time-discretisation of the Ruijsenaars-Schneider model , 1994, hep-th/9412170.

[9]  Y. Quano GENERALIZED SKLYANIN ALGEBRA AND INTEGRABLE LATTICE MODELS , 1994 .

[10]  J. Suzuki,et al.  FUNCTIONAL RELATIONS IN SOLVABLE LATTICE MODELS I: FUNCTIONAL RELATIONS AND REPRESENTATION THEORY , 1993, hep-th/9309137.

[11]  K. Hasegawa Crossing Symmetry in Elliptic Solutions of the Yang-Baxter Equation and a New L-operator for Belavin's Solution , 1993 .

[12]  Yasuhiro Ohta,et al.  Casorati and Discrete Gram Type Determinant Representations of Solutions to the Discrete KP Hierarchy , 1993 .

[13]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[14]  桑野 泰宏 Sklyanin algebra and integrable lattice models , 1993 .

[15]  A. Valleriani,et al.  DYNKIN TBA'S , 1992 .

[16]  P. Pearce,et al.  Conformal weights of RSOS lattice models and their fusion hierarchies , 1992 .

[17]  A. Orlov,et al.  Matrix models among integrable theories: Forced hierarchies and operator formalism , 1991 .

[18]  A. Zamolodchikov On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories , 1991 .

[19]  N. Reshetikhin,et al.  Restricted solid-on-solid models connected with simply laced algebras and conformal field theory , 1990 .

[20]  Y. .. Zhou,et al.  Fusion procedure and Sklyanin algebra , 1990 .

[21]  J. Gervais,et al.  Extended C = ∞ conformal systems from classical toda field theories , 1989 .

[22]  R. Hirota Discrete Two-Dimensional Toda Molecule Equation , 1987 .

[23]  N. Saitoh,et al.  Gauge and dual symmetries and linearization of Hirota’s bilinear equations , 1987 .

[24]  N. Saitoh,et al.  Linearization of bilinear difference equations , 1987 .

[25]  A. N. Kirrilov Completeness of states of the generalized Heisenberg magnet , 1987 .

[26]  N. Reshetikhin,et al.  GL3-invariant solutions of the Yang-Baxter equation and associated quantum systems , 1986 .

[27]  S. Ruijsenaars,et al.  A new class of integrable systems and its relation to solitons , 1986 .

[28]  C. Tracy,et al.  ℤn Baxter model: Symmetries and the Belavin parametrization , 1986 .

[29]  I. Cherednik Special bases of irreducible representations of a degenerate affine Hecke algebra , 1986 .

[30]  K. Takasaki,et al.  Toda lattice hierarchy , 1984 .

[31]  Michio Jimbo,et al.  Method for Generating Discrete Soliton Equations. I , 1983 .

[32]  I. Cherednik ON THE PROPERTIES OF FACTORIZED S MATRICES IN ELLIPTIC FUNCTIONS. (IN RUSSIAN) , 1982 .

[33]  T. Miwa On Hirota's difference equations , 1982 .

[34]  R. Hirota Discrete Analogue of a Generalized Toda Equation , 1981 .

[35]  N. Reshetikhin,et al.  Yang-Baxter equation and representation theory: I , 1981 .

[36]  A. Belavin Dynamical symmetry of integrable quantum systems , 1981 .

[37]  Igor Krichever,et al.  Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles , 1980 .

[38]  Alexander B. Zamolodchikov,et al.  Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models , 1979 .

[39]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations. V. Nonlinear Equations Reducible to Linear Equations , 1979 .

[40]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[41]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations. IV. Bäcklund Transformation for the Discrete-Time Toda Equation , 1978 .

[42]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .