Vanishing solutions of anisotropic parabolic equations with variable nonlinearity

Abstract We study the property of finite time vanishing of solutions of the homogeneous Dirichlet problem for the anisotropic parabolic equations u t − ∑ i = 1 n D i ( a i ( x , t , u ) | D i u | p i ( x , t ) − 2 D i u ) + c ( x , t ) | u | σ ( x , t ) − 2 u = f ( x , t ) with variable exponents of nonlinearity p i ( x , t ) , σ ( x , t ) ∈ ( 1 , ∞ ) . We show that the solutions of this problem may vanish in a finite time even if the equation combines the directions of slow and fast diffusion and estimate the extinction moment in terms of the data. If the solution does not identically vanish in a finite time, we estimate the rate of vanishing of the solution as t → ∞ . We establish conditions on the nonlinearity exponents which guarantee vanishing of the solution at a finite instant even if the equation eventually transforms into the linear one.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[2]  S. Antontsev Localized solutions of anisotropic parabolic equations , 2008 .

[3]  Sergey Shmarev,et al.  Chapter 1 Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions , 2006 .

[4]  S. Antontsev,et al.  Anisotropic parabolic equations with variable nonlinearity , 2009 .

[5]  S. Antontsev,et al.  Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions , 2006 .

[6]  Sergey Shmarev,et al.  A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions , 2005 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  S. Antontsev,et al.  On Localization of Solutions of Elliptic Equations with Nonhomogeneous Anisotropic Degeneracy , 2005 .

[9]  M. Chipot,et al.  Anisotropic equations: Uniqueness and existence results , 2008, Differential and Integral Equations.

[10]  M. Chipot,et al.  Uniqueness results for equations of the p(x)-Laplacian type , 2007 .

[11]  L. Diening Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$ , 2004 .

[12]  S. Antontsev,et al.  Parabolic Equations with Anisotropic Nonstandard Growth Conditions , 2006 .

[13]  M. Sango On a doubly degenerate quasilinear anisotropic parabolic equation , 2003 .

[14]  Fengquan Li Anisotropic parabolic equations with measure data II , 2006 .

[15]  Jiří Rákosník,et al.  Sobolev embeddings with variable exponent , 2000 .

[16]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[17]  Mazen Saad,et al.  Entropy solution for anisotropic reaction-diffusion-advenction systems with L1 data , 2005 .

[18]  V. Zhikov Density of Smooth Functions in Sobolev-Orlicz Spaces , 2006 .

[19]  K. Soltanov Some nonlinear equations of the nonstable filtration type and embedding theorems , 2006 .

[20]  S. Antontsev,et al.  Extinction of solutions of parabolic equations with variable anisotropic nonlinearities , 2008 .

[21]  Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data , 2006 .

[22]  Jesús Ildefonso Díaz Díaz,et al.  Energy Methods for Free Boundary Problems , 2002 .

[23]  S. Antontsev,et al.  Localization of solutions of anisotropic parabolic equations , 2009 .

[24]  S. Samko On a progress in the theory of lebesgue spaces with variable exponent: maximal and singular operators , 2005 .

[25]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[26]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[27]  Luisa Consiglieri,et al.  Elliptic boundary value problems with nonstandard growth conditions , 2009 .

[28]  V. Zhikov,et al.  Higher integrability for parabolic equations of $p(x,t)$-Laplacian type , 2005, Advances in Differential Equations.