An Implementation of Digital Signature and Key Agreement on IEEE802.15.4 WSN Embedded Device

A wireless sensor network (WSN) now becomes popular in context awareness development to distribute critical information and provide knowledge services to everyone at anytime and anywhere. However, the data transfer in a WSN potentially encounters many threats and attacks. Hence, particular security schemes are required to prevent them. A WSN usually uses low power, low performance, and limited resources devices. One of the most promising alternatives to public key cryptosystems is Elliptic Curve Cryptography (ECC), due to it pledges smaller keys size. This implies the low cost consumption to calculate arithmetic operations in cryptographic schemes and protocols. Therefore, ECC would be strongly required to be implemented in WSN embedded devices with limited resources (i.e., processor speed, memory, and storage). In this paper, we present an implementation of security system on IEEE802.15.4 WSN device with the employment of Elliptic Curve Digital Signature Algorithm (ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol. Our experimental results on Intel Mote2 showed that the total time for signature generation is 110 ms, signature verification is 134 ms, and ECDH shared key generation is 69 ms on the setting of 160bit security level.