Economic production quantity model for items with imperfect quality

[1]  Meir J. Rosenblatt,et al.  Economic Production Cycles with Imperfect Production Processes , 1986 .

[2]  Evan L. Porteus Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction , 1986, Oper. Res..

[3]  Jerome S. Osteryoung,et al.  Use of the EOQ model for inventory analysis , 1986 .

[4]  Avraham Shtub,et al.  Strategic allocation of inspection effort in a serial, multi-product production system , 1987 .

[5]  Kamran Moinzadeh,et al.  A continuous‐review inventory model with constant resupply time and defective items , 1987 .

[6]  Meir J. Rosenblatt,et al.  Simultaneous determination of production cycle and inspection schedules in a production system , 1987 .

[7]  R L Schwaller EOQ UNDER INSPECTION COSTS , 1988 .

[8]  Xin Zhang,et al.  Joint lot sizing and inspection policy in an EOQ model with random yield , 1990 .

[9]  Horacio Hideki Yanasse EOQ Systems: The Case of an Increase in Purchase Cost , 1990 .

[10]  Thomas W. Knowles,et al.  Standard Container Size Discounts and the Single-Period Inventory Problem* , 1991 .

[11]  T.C.E. Cheng,et al.  An Economic Order Quantity Model with Demand-Dependent Unit Production Cost and Imperfect Production Processes , 1991 .

[12]  Richard J. Tersine,et al.  LOT SIZE OPTIMIZATION WITH QUANTITY AND FREIGHT RATE DISCOUNTS , 1991 .

[13]  Some Comments on the Validity of EOQ Formula under Inflationary Conditions , 1991 .

[14]  Jim Freeman,et al.  Inventory Control and Management , 1992 .

[15]  Timothy L. Urban Deterministic inventory models incorporating marketing decisions , 1992 .

[16]  A. Goswami,et al.  An EOQ Model for Deteriorating Items with Linear Time-dependent Demand Rate and Shortages under Inflation and Time Discounting , 1995 .

[17]  K. Jo Min,et al.  A competitive inventory model with options to reduce setup and inventory holding costs , 1995, Comput. Oper. Res..

[18]  Ben A. Chaouch,et al.  An EOQ model with random variations in demand , 1995 .

[19]  Shoshana Anily Single-machine lot-sizing with uniform yields and rigid demands: robustness of the optimal solution , 1995 .