Colloidal quantum dot photovoltaics

Colloidal quantum dot solar cells offer the possibility of combining low-cost, low-temperature solution-processing with efficient photon harvesting over the entire solar spectrum. Their quantum size effect tunability offers a path to tandem and triple-junction cells. The first solution-processed infrared solar cells were reported in 2005; the latest devices offer greater than 5% AM1.5 PCE and many paths remain for further improvement to 10% and beyond. We will review the field and its prospects.

[1]  H. Rubinsztein-Dunlop,et al.  Inorganic surface passivation of PbS nanocrystals resulting in strong photoluminescent emission , 2003 .

[2]  K. Wei,et al.  An Organic Hole Transport Layer Enhances the Performance of Colloidal PbSe Quantum Dot Photovoltaic Devices , 2010 .

[3]  Larissa Levina,et al.  Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. , 2008, ACS nano.

[4]  E. Sargent Infrared photovoltaics made by solution processing , 2009 .

[5]  F. Wise,et al.  Electronic structure of Pb Se ∕ Pb S core-shell quantum dots , 2007 .

[6]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[7]  Boris I Shklovskii,et al.  Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold , 1976 .

[8]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[9]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[10]  Marija Drndic,et al.  Coulomb blockade and hopping conduction in PbSe quantum dots. , 2005, Physical review letters.

[11]  Nevill Mott,et al.  Electrons in disordered structures , 2001 .

[12]  Edward H Sargent,et al.  Colloidal quantum dot photovoltaics: a path forward. , 2011, ACS nano.

[13]  Nevill Mott,et al.  Coulomb gap and low-temperature conductivity of disordered systems , 1975 .

[14]  Ko Kang Ning,et al.  SYNTHESIS AND CHARACTERIZATION OF , 2011 .

[15]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[16]  E. Weiss,et al.  The Effect of a Common Purification Procedure on the Chemical Composition of the Surfaces of CdSe Quantum Dots Synthesized with Trioctylphosphine Oxide , 2010 .

[17]  Ye Tao,et al.  Self-organized phase segregation between inorganic nanocrystals and PC61BM for hybrid high-efficiency bulk heterojunction photovoltaic cells , 2010 .

[18]  Maya Brumer,et al.  PbSe/PbS and PbSe/PbSexS1–x Core/Shell Nanocrystals , 2005 .

[19]  J. H. Blokland,et al.  Tailoring the physical properties of thiol-capped PbS quantum dots by thermal annealing , 2009, Nanotechnology.

[20]  Nasser N Peyghambarian,et al.  Fabrication of bulk heterojunction plastic solar cells by screen printing , 2001 .

[21]  Samson A Jenekhe,et al.  Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots. , 2010, Nano letters.

[22]  Al-Amin Dhirani,et al.  Charge transport in nanoparticle assemblies. , 2008, Chemical reviews.

[23]  A. Q. Le Quang,et al.  Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications. , 2006, The journal of physical chemistry. B.

[24]  Juan Bisquert,et al.  Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode , 2008, Nanotechnology.

[25]  Edward H. Sargent,et al.  Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids , 2008 .

[26]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[27]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.

[28]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .

[29]  T. Lutz,et al.  The fabrication and analysis of a PbS nanocrystal:C60 bilayer hybrid photovoltaic system , 2009, Nanotechnology.

[30]  G. Jabbour,et al.  Inkjet Printed RGB Quantum Dot-Hybrid LED , 2010, Journal of Display Technology.

[31]  Jianbo Gao,et al.  Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.

[32]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[33]  Xin Ma,et al.  Efficient exciton funneling in cascaded PbS quantum dot superstructures. , 2011, ACS nano.

[34]  Matthew C. Beard,et al.  Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. , 2008, Nano letters.

[35]  Norman R. Heckenberg,et al.  Investigation of the role of cadmium sulfide in the surface passivation of lead sulfide quantum dots , 2004 .

[36]  Byung-Ryool Hyun,et al.  Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. , 2008, ACS nano.

[37]  Edward H. Sargent,et al.  Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts , 2010 .

[38]  F. Wise,et al.  Lead salt quantum dots: the limit of strong quantum confinement. , 2000, Accounts of chemical research.

[39]  Christopher B. Murray,et al.  Synthesis of Colloidal PbSe/PbS Core−Shell Nanowires and PbS/Au Nanowire−Nanocrystal Heterostructures , 2007 .

[40]  M. Beard,et al.  Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. , 2009, Nano letters.

[41]  A Paul Alivisatos,et al.  Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.

[42]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[43]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[44]  Eminet Gebremichael,et al.  p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids. , 2010, ACS nano.

[45]  H. Hoppea,et al.  Modeling the optical absorption within conjugated polymer / fullerene-based bulk-heterojunction organic solar cells , 2003 .

[46]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[47]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[48]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[49]  Jingkang Wang,et al.  Integration of planar and bulk heterojunctions in polymer/nanocrystal hybrid photovoltaic cells , 2009 .

[50]  Dmitri V Talapin,et al.  Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2 Te thin films. , 2007, Nature materials.

[51]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[52]  Thomas A. Klar,et al.  Exciton Recycling in Graded Gap Nanocrystal Structures , 2004 .

[53]  Manuel M. Baizer,et al.  The Electrochemical Society , 1903, Nature.

[54]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[55]  K. K. Rao,et al.  Identification of surface states in PbS quantum dots by temperature dependent photoluminescence , 2008 .

[56]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[57]  Tatsuya Okubo,et al.  Overview of Nanoparticle Array Formation by Wet Coating , 2003 .

[58]  Wei Feng,et al.  Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots bilayer , 2010 .

[59]  Edward H. Sargent,et al.  Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. , 2008, Nano letters.

[60]  Edward H. Sargent,et al.  Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. , 2008, ACS nano.

[61]  Jeffrey J Urban,et al.  Carrier distribution and dynamics of nanocrystal solids doped with artificial atoms. , 2010, Nano letters.

[62]  Matt Law,et al.  The photothermal stability of PbS quantum dot solids. , 2011, ACS nano.

[63]  Victor I Klimov,et al.  Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon. , 2009, Nano letters.

[64]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[65]  Jin Young Kim,et al.  Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation , 2011, Nature communications.

[66]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[67]  Kai Zhu,et al.  Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. , 2006, The journal of physical chemistry. B.

[68]  Edward H. Sargent,et al.  Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion , 2008 .

[69]  Matt Law,et al.  Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. , 2010, Nano letters.

[70]  Shinji Aramaki,et al.  Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells , 2009 .

[71]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[72]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[73]  E. Sargent Infrared Quantum Dots , 2005 .

[74]  James R Chelikowsky,et al.  Self-purification in semiconductor nanocrystals. , 2006, Physical review letters.

[75]  Helmut Neugebauer,et al.  Hybrid Solar Cells Using HgTe Nanocrystals and Nanoporous TiO2 Electrodes , 2006 .

[76]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[77]  Patrick S Grant,et al.  SnS/PbS nanocrystal heterojunction photovoltaics , 2010, Nanotechnology.

[78]  Guangmei Zhai,et al.  High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature , 2010 .

[79]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[80]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[81]  Gregory D. Scholes,et al.  IV–VI Nanocrystal–polymer solar cells , 2008 .

[82]  Matthew C Beard,et al.  Time-resolved photoconductivity of PbSe nanocrystal arrays. , 2006, The journal of physical chemistry. B.

[83]  Edward H. Sargent,et al.  Schottky-quantum dot photovoltaics for efficient infrared power conversion , 2008 .

[84]  Jiyoul Lee,et al.  High carrier densities achieved at low voltages in Ambipolar PbSe nanocrystal thin-film transistors. , 2009, Nano letters.

[85]  Lukasz Brzozowski,et al.  Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. , 2010, ACS nano.

[86]  Jiang Tang,et al.  Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.

[87]  Risto Myllylä,et al.  Inkjet printing of light emitting quantum dots , 2009 .

[88]  Edward H. Sargent,et al.  Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution , 2007 .

[89]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[90]  Gerald Siefer,et al.  Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight , 2009 .

[91]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[92]  Yu Zhang,et al.  Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals. , 2009, ACS nano.

[93]  Kui Yu,et al.  Highly efficient cross-linked PbS nanocrystal/C 60 hybrid heterojunction photovoltaic cell , 2010 .

[94]  P. Prasad,et al.  Self Passivating Hybrid (Organic/Inorganic) Tandem Solar Cell , 2008 .

[95]  N. Ashcroft,et al.  Vegard's law. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[96]  Nevill Mott,et al.  Conduction in non-crystalline materials , 1989 .

[97]  F. V. van Veggel,et al.  Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[98]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[99]  J. Nelson The physics of solar cells , 2003 .

[100]  Stefan Myrskog,et al.  Heavy-metal-free solution-processed nanoparticle-based photodetectors: doping of intrinsic vacancies enables engineering of sensitivity and speed. , 2009, ACS nano.

[101]  Byung-Ryool Hyun,et al.  PbSe nanocrystal excitonic solar cells. , 2009, Nano letters.

[102]  Darrick J. Williams,et al.  Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. , 2008, Journal of the American Chemical Society.

[103]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[104]  Prashant Nagpal,et al.  Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films , 2011, Nature communications.

[105]  Jean-Paul Kleider,et al.  Electrical Properties of Amorphous Silicon Transistors and MIS‐Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations , 1993 .

[106]  Xiaogang Peng,et al.  Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. , 2001, Journal of the American Chemical Society.

[107]  Chee Wei Wong,et al.  Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer. , 2008, Nano letters.

[108]  W. Warta,et al.  Solar cell efficiency tables (version 35) , 2010 .

[109]  Lukasz Brzozowski,et al.  Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. , 2010, Journal of the American Chemical Society.

[110]  Zeger Hens,et al.  Surface chemistry of colloidal PbSe nanocrystals. , 2008, Journal of the American Chemical Society.