Cloaking Devices, Electromagnetic Wormholes, and Transformation Optics

We describe recent theoretical and experimental progress on making objects invisible to detection by electromagnetic waves. Ideas for devices that would once have seemed fanciful may now be at least approximately implemented physically using a new class of artificially structured materials called metamaterials. Maxwell's equations have transformation laws that allow for the design of electromagnetic material parameters that steer light around a hidden region, returning it to its original path on the far side. Not only would observers be unaware of the contents of the hidden region, they would not even be aware that something was being hidden. An object contained in the hidden region, which would have no shadow, is said to be cloaked. Proposals for, and even experimental implementations of, such cloaking devices have received the most attention, but other designs having striking effects on wave propagation are possible. All of these designs are initially based on the transformation laws of the equations that govern wave propagation but, due to the singular parameters that give rise to the desired effects, care needs to be taken in formulating and analyzing physically meaningful solutions. We recount the recent history of the subject and discuss some of the mathematical and physical issues involved.

[1]  Guy Bouchitté,et al.  Homogenization of a set of parallel fibres , 1997 .

[2]  Z. Jacob,et al.  Impedance matched hyperlens , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[3]  Juha Kinnunen,et al.  Sobolev Spaces with Zero Boundary Values on Metric Spaces , 2000 .

[4]  Hongsheng Chen,et al.  Electromagnetic wave interactions with a metamaterial cloak. , 2007, Physical review letters.

[5]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[6]  Rodolfo H. Torres,et al.  Uniqueness in the Inverse Conductivity Problem for Conductivities with 3/2 Derivatives in Lp, p > 2n , 2003 .

[7]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[8]  Lixin Ran,et al.  Response of a cylindrical invisibility cloak to electromagnetic waves , 2007 .

[9]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[10]  Robert V. Kohn,et al.  Magnetism and Homogenization of Microresonators , 2007, Multiscale Model. Simul..

[11]  Ulf Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[12]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[13]  Vladimir M. Shalaev,et al.  Negative Index of Refraction in Optical Metamaterials , 2005 .

[14]  R. Weder The Boundary Conditions for Electromagnetic Invisibility Cloaks , 2008 .

[15]  John Sylvester,et al.  An anisotropic inverse boundary value problem , 1990 .

[16]  Per-Simon Kildal,et al.  Artificially soft and hard surfaces in electromagnetics , 1990 .

[17]  Gunther Uhlmann,et al.  Anisotropic inverse problems in two dimensions , 2003 .

[18]  David R. Smith,et al.  Scattering theory derivation of a 3D acoustic cloaking shell. , 2008, Physical review letters.

[19]  Matti Lassas,et al.  Electromagnetic Wormholes via Handlebody Constructions , 2007, 0704.0914.

[20]  Oscar P. Bruno,et al.  Superlens-cloaking of small dielectric bodies in the quasistatic regime , 2007 .

[21]  Zubin Jacob,et al.  Impedance matched hyperlens , 2008 .

[22]  G. Milton,et al.  On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Guy Bouchitté,et al.  Left-handed media and homogenization of photonic crystals. , 2005, Optics letters.

[24]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[25]  S. Maci,et al.  Alternative derivation of electromagnetic cloaks and concentrators , 2007, 0710.2933.

[26]  Che Ting Chan,et al.  Extending the bandwidth of electromagnetic cloaks , 2007 .

[27]  Yaroslav Kurylev,et al.  To the reconstruction of a riemannian manifold via its spectral data , 1992 .

[28]  Gunther Uhlmann,et al.  Complex geometrical optics solutions for Lipschitz conductivities , 2003 .

[29]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[30]  L. B. Slichter An Inverse Boundary Value Problem in Electrodynamics , 1933 .

[31]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[32]  I. Smolyaninov,et al.  Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm. , 2008, Optics letters.

[33]  Matti Lassas,et al.  The Calderon problem for conormal potentials, I: Global uniqueness and reconstruction , 2001 .

[34]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[35]  J. Pendry,et al.  Calculation of material properties and ray tracing in transformation media. , 2006, Optics express.

[36]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[37]  A. Katchalov,et al.  Multidimensional inverse problem with incomplete boundary spectral data , 1998 .

[38]  Touvia Miloh,et al.  Neutral inhomogeneities in conduction phenomena , 1999 .

[39]  A. Ward,et al.  Refraction and geometry in Maxwell's equations , 1996 .

[40]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .

[41]  Harald Giessen,et al.  Three-dimensional photonic metamaterials at optical frequencies. , 2008, Nature materials.

[42]  Amber Jenkins Metamaterials: Lost in space , 2008 .

[43]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[44]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[45]  R. Weder A Rigorous Time-Domain Analysis of Full--Wave Electromagnetic Cloaking (Invisibility) , 2007, 0704.0248.

[46]  C. C. Davis,et al.  Electromagnetic cloaking in the visible frequency range , 2007 .

[47]  Gennady Shvets,et al.  Metamaterials add an extra dimension. , 2008, Nature materials.

[48]  Jin Au Kong,et al.  Extraordinary surface voltage effect in the invisibility cloak with an active device inside. , 2007, Physical review letters.

[49]  Milton,et al.  Optical and dielectric properties of partially resonant composites. , 1994, Physical review. B, Condensed matter.

[50]  J. Pendry,et al.  Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect. , 2007, Optics letters.

[51]  M. Qiu,et al.  Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. , 2007, Physical review letters.

[52]  M Cannavo,et al.  Lost in space. , 1993, Administrative radiology : AR.

[53]  Rodger M. Walser,et al.  Metamaterials: An Introduction , 2003 .

[54]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[55]  Akhlesh Lakhtakia,et al.  Introduction to Complex Mediums for Optics and Electromagnetics , 2003 .

[56]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[57]  Gunther Uhlmann Chapter 6.1.5 – Scattering by a Metric1 , 2002 .

[58]  David Isaacson,et al.  Biomedical Applications of Electrical Impedance Tomography , 2003 .

[59]  A. Kildishev,et al.  Engineering space for light via transformation optics. , 2007, Optics letters.

[60]  Ville Kolehmainen,et al.  The Inverse Conductivity Problem with an Imperfectly Known Boundary , 2005, SIAM J. Appl. Math..

[61]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[62]  M. Lassas,et al.  Inverse Boundary Spectral Problems , 2001 .

[63]  Matti Lassas,et al.  Maxwell's equations with a polarization independent wave velocity: direct and inverse problems , 2006 .

[64]  Ari Sihvola,et al.  REALIZATION OF GENERALIZED SOFT-AND-HARD BOUNDARY , 2006 .

[65]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[66]  R. McPhedran,et al.  Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. , 2007, Optics express.

[67]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  David R. Smith,et al.  Homogenization of metamaterials by field averaging (invited paper) , 2006 .

[69]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[70]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[71]  David R. Smith,et al.  Optical design of reflectionless complex media by finite embedded coordinate transformations. , 2007, Physical review letters.

[72]  Milton Kerker,et al.  Erratum: Invisible bodies , 1975 .

[73]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[74]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[75]  Robert V. Kohn,et al.  IDENTIFICATION OF AN UNKNOWN CONDUCTIVITY BY MEANS OF MEASUREMENTS AT THE BOUNDARY. , 1983 .

[76]  K. Tsakmakidis,et al.  Optics: Watch your back , 2008, Nature.

[77]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[79]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[80]  Matti Lassas,et al.  Anisotropic conductivities that cannot be detected by EIT. , 2003, Physiological measurement.

[81]  Gunther Uhlmann Scattering by a Metric 1 , 2002 .

[82]  G. Uhlmann,et al.  Improvement of cylindrical cloaking with the SHS lining. , 2007, Optics express.

[83]  M. Qiu,et al.  Scattering characteristics of simplified cylindrical invisibility cloaks. , 2007, Optics express.

[84]  R. Weder A rigorous analysis of high-order electromagnetic invisibility cloaks , 2007, 0711.0507.

[85]  G. Uhlmann,et al.  Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. , 2007, Physical review letters.

[86]  Matti Lassas,et al.  On determining a Riemannian manifold from the Dirichlet-to-Neumann map , 2001 .

[88]  Albert Einstein,et al.  The Particle Problem in the General Theory of Relativity , 1935 .

[89]  David R. Smith,et al.  Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations , 2007, 0706.2452.

[90]  J. Pendry,et al.  Metamaterials at zero frequency , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[91]  Guy Bouchitté,et al.  Negative refraction in periodic and random photonic crystals , 2005 .

[92]  Ross C. McPhedran,et al.  Opaque perfect lenses , 2007 .

[93]  Matti Lassas,et al.  Comment on "Scattering Theory Derivation of a 3D Acoustic Cloaking Shell" , 2008, 0801.3279.

[94]  Yaroslav Kurylev Multi-dimensional inverse boundary problems by BC-method: Groups of transformations and uniqueness results , 1993 .

[95]  P. Kildal Definition of artificially soft and hard surfaces for electromagnetic waves , 1988 .

[96]  Huanyang Chen,et al.  Transformation media that rotate electromagnetic fields , 2007, physics/0702050.

[97]  Guy Bouchitté,et al.  Homogenization near resonances and artificial magnetism from dielectrics , 2004 .

[98]  Gunther Uhlmann,et al.  Developments in inverse problems since Calderon’s foundational paper , 1999 .

[99]  G. Milton New metamaterials with macroscopic behavior outside that of continuum elastodynamics , 2007, 0706.2202.

[100]  D. Miller,et al.  On perfect cloaking. , 2006, Optics express.

[101]  Ismo V. Lindell Generalized soft-and-hard surface , 2002 .

[102]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[103]  D Schurig,et al.  Transformation-designed optical elements. , 2007, Optics express.

[104]  Robert V. Kohn,et al.  Cloaking via change of variables for the Helmholtz equation , 2010 .

[105]  Matti Lassas,et al.  The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary , 2003 .

[106]  N. Holmer,et al.  Electrical Impedance Tomography , 1991 .

[107]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[108]  P.-S. Kildal,et al.  RF invisibility using metamaterials: Harry Potter’s Cloak or The Emperor’s New Clothes? , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[109]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[110]  J. Nacher,et al.  A novel design of dielectric perfect invisibility devices , 2007, 0711.1122.

[111]  Vladimir M. Shalaev,et al.  Non-Magnetic Cloak without Reflection , 2007, 0707.3641.

[112]  G. Uhlmann,et al.  Full-Wave Invisibility of Active Devices at All Frequencies , 2006, math/0611185.