Optimizing aromatic oligoamide foldamer side-chains for ribosomal translation initiation.

The tolerance of ribosomal peptide translation for helical aromatic oligoamide foldamers appended as initiators has been investigated. Small cationic foldamer side-chains were shown to expand the range of foldamer-peptide hybrids that can be produced by the ribosome to more rigid sequences.

[1]  T. Katoh,et al.  Ribosomal Incorporation of Consecutive β-Amino Acids. , 2018, Journal of the American Chemical Society.

[2]  J. M. Rogers,et al.  Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids , 2018, Nature Chemistry.

[3]  T. Katoh,et al.  Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation , 2017, Nucleic acids research.

[4]  Xiaobo Hu,et al.  Optimizing side chains for crystal growth from water: a case study of aromatic amide foldamers† †Electronic supplementary information (ESI) available: Experimental protocols for synthesis; characterization of new compounds; methods for X-ray crystallography; solubility studies. CCDC 1521878, 1525865 , 2017, Chemical science.

[5]  T. Katoh,et al.  Consecutive Elongation of D-Amino Acids in Translation. , 2017, Cell chemical biology.

[6]  B. Baptiste,et al.  Multivalent Interactions between an Aromatic Helical Foldamer and a DNA G‐Quadruplex in the Solid State , 2016, Chembiochem : a European journal of chemical biology.

[7]  H. Murakami,et al.  Ribosomal Synthesis of Peptides with Multiple β-Amino Acids. , 2016, Journal of the American Chemical Society.

[8]  Prakrit V. Jena,et al.  Targeting DNA G-Quadruplexes with Helical Small Molecules , 2014, Chembiochem : a European journal of chemical biology.

[9]  J. Chin,et al.  Expanding and reprogramming the genetic code of cells and animals. , 2014, Annual review of biochemistry.

[10]  L. Hurst,et al.  Positively Charged Residues Are the Major Determinants of Ribosomal Velocity , 2013, PLoS biology.

[11]  H. Murakami,et al.  Reevaluation of the D-amino acid compatibility with the elongation event in translation. , 2013, Journal of the American Chemical Society.

[12]  Horst Kessler,et al.  Intestinal permeability of cyclic peptides: common key backbone motifs identified. , 2012, Journal of the American Chemical Society.

[13]  J. Toulmé,et al.  Deciphering aromatic oligoamide foldamer-DNA interactions. , 2012, Angewandte Chemie.

[14]  Yizhong Zhang,et al.  On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds , 2011, Nature chemical biology.

[15]  T. Katoh,et al.  Flexizymes for genetic code reprogramming , 2011, Nature Protocols.

[16]  H. Kessler,et al.  The effect of multiple N-methylation on intestinal permeability of cyclic hexapeptides. , 2011, Molecular pharmaceutics.

[17]  B. Baptiste,et al.  Solid phase synthesis of aromatic oligoamides: application to helical water-soluble foldamers. , 2010, The Journal of organic chemistry.

[18]  M. Delville,et al.  Nanosized hybrid oligoamide foldamers: aromatic templates for the folding of multiple aliphatic units. , 2009, Journal of the American Chemical Society.

[19]  Stephen P. Hale,et al.  The exploration of macrocycles for drug discovery — an underexploited structural class , 2008, Nature Reviews Drug Discovery.

[20]  Horst Kessler,et al.  Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. , 2008, Angewandte Chemie.

[21]  M Gerstein,et al.  The geometry of the ribosomal polypeptide exit tunnel. , 2006, Journal of molecular biology.

[22]  Hiroshi Murakami,et al.  A highly flexible tRNA acylation method for non-natural polypeptide synthesis , 2006, Nature Methods.

[23]  Matthew P Jacobson,et al.  Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. , 2006, Journal of the American Chemical Society.

[24]  J. Szostak,et al.  Ribosomal synthesis of unnatural peptides. , 2005, Journal of the American Chemical Society.

[25]  N. Kyrpides,et al.  Universally conserved translation initiation factors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.