Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines.

This paper uses a divergence-conforming B-spline fluid discretization to address the long-standing issue of poor mass conservation in immersed methods for computational fluid-structure interaction (FSI) that represent the influence of the structure as a forcing term in the fluid subproblem. We focus, in particular, on the immersogeometric method developed in our earlier work, analyze its convergence for linear model problems, then apply it to FSI analysis of heart valves, using divergence-conforming B-splines to discretize the fluid subproblem. Poor mass conservation can manifest as effective leakage of fluid through thin solid barriers. This leakage disrupts the qualitative behavior of FSI systems such as heart valves, which exist specifically to block flow. Divergence-conforming discretizations can enforce mass conservation exactly, avoiding this problem. To demonstrate the practical utility of immersogeometric FSI analysis with divergence-conforming B-splines, we use the methods described in this paper to construct and evaluate a computational model of an in vitro experiment that pumps water through an artificial valve.

[1]  J. C. Simo,et al.  A perturbed Lagrangian formulation for the finite element solution of contact problems , 1985 .

[2]  Antonio J. Gil,et al.  An enhanced Immersed Structural Potential Method for fluid-structure interaction , 2013, J. Comput. Phys..

[3]  I. Borazjani Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves , 2013 .

[4]  S. Biringen,et al.  Numerical Simulation of a Cylinder in Uniform Flow , 1996 .

[5]  B. Griffith,et al.  An immersed boundary method for rigid bodies , 2014, 1505.07865.

[6]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[7]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[8]  Ellen Kuhl,et al.  Isogeometric Kirchhoff-Love shell formulations for biological membranes. , 2015, Computer methods in applied mechanics and engineering.

[9]  M. Hestenes Multiplier and gradient methods , 1969 .

[10]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[11]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[12]  Roland Wüchner,et al.  Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .

[13]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[14]  Uzair Khan,et al.  Fluid Structure Interaction and Airbag ALE for Out of Position , 2005 .

[15]  T. Wick Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity , 2014 .

[16]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[17]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[18]  R. van Loon,et al.  Towards computational modelling of aortic stenosis , 2010 .

[19]  Peter Hansbo,et al.  A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .

[20]  Matteo Astorino,et al.  Computational analysis of an aortic valve jet with Lagrangian coherent structures. , 2010, Chaos.

[21]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[22]  Michael E. Mortenson,et al.  Geometric Modeling , 2008, Encyclopedia of GIS.

[23]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[24]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[25]  David B. Goldstein,et al.  Direct numerical simulations of riblets to constrain the growth of turbulent spots , 2011, Journal of Fluid Mechanics.

[26]  Changhoon Lee,et al.  Stability characteristics of the virtual boundary method in three-dimensional applications , 2003 .

[27]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[28]  H. Sung,et al.  An immersed boundary method for fluid–flexible structure interaction , 2009 .

[29]  Constantin Bacuta,et al.  A Unified Approach for Uzawa Algorithms , 2006, SIAM J. Numer. Anal..

[30]  D. Goldstein,et al.  DNS Study of Transient Disturbance Growth and Bypass Transition Due to Realistic Roughness , 2008 .

[31]  Daniel Kenneth Hildebrand,et al.  DESIGN AND EVALUATION OF A NOVEL PULSATILE BIOREACTOR FOR BIOLOGICALLY ACTIVE HEART VALVES , 2004 .

[32]  Jie Shen,et al.  On error estimates of the penalty method for unsteady Navier-Stokes equations , 1995 .

[33]  V. Brummelen Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction , 2009 .

[34]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[35]  H. Sung,et al.  Actively flapping tandem flexible flags in a viscous flow , 2015, Journal of Fluid Mechanics.

[36]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[37]  Trond Kvamsdal,et al.  Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines , 2015 .

[38]  Soo Jai Shin,et al.  Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method , 2008 .

[39]  Chennakesava Kadapa,et al.  A fictitious domain/distributed Lagrange multiplier based fluid–structure interaction scheme with hierarchical B-Spline grids , 2016 .

[40]  H. Uzawa,et al.  Preference, production, and capital: Iterative methods for concave programming , 1989 .

[41]  M. Souli,et al.  ALE and Fluid/Structure Interaction in LS-DYNA , 2004 .

[42]  Thomas J. R. Hughes,et al.  Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis , 2004, Annals of Biomedical Engineering.

[43]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[44]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[45]  Gil Marom,et al.  Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves , 2014, Archives of Computational Methods in Engineering.

[46]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[47]  Fotis Sotiropoulos,et al.  Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. , 2013, Journal of biomechanics.

[48]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[49]  I. C. Howard,et al.  Simulation of damage in a porcine prosthetic heart valve. , 1999, Journal of medical engineering & technology.

[50]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[51]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[52]  Christopher K. Zarins,et al.  Computed Fractional Flow Reserve (FFTCT) Derived from Coronary CT Angiography , 2013, Journal of Cardiovascular Translational Research.

[53]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[54]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[55]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[56]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[57]  D. Goldstein,et al.  Near-field flow structures about subcritical surface roughness , 2014 .

[58]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[59]  Claudio Chiastra,et al.  Fluid–Structure Interaction Model of a Percutaneous Aortic Valve: Comparison with an In Vitro Test and Feasibility Study in a Patient-Specific Case , 2016, Annals of Biomedical Engineering.

[60]  Leo G. Rebholz,et al.  A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[61]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[62]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[63]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[64]  Peter Wriggers,et al.  Isogeometric contact: a review , 2014 .

[65]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[66]  Alison L. Marsden,et al.  A computational framework for derivative-free optimization of cardiovascular geometries , 2008 .

[67]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[68]  D. Goldstein,et al.  Secondary flow induced by riblets , 1998, Journal of Fluid Mechanics.

[69]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[70]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[71]  I. C. Howard,et al.  An approach to the simulation of fluid-structure interaction in the aortic valve. , 2006, Journal of biomechanics.

[72]  Emiliano Votta,et al.  Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics. , 2013, Medical engineering & physics.

[73]  Michael S. Sacks,et al.  Dynamic In Vitro Quantification of Bioprosthetic Heart Valve Leaflet Motion Using Structured Light Projection , 2001, Annals of Biomedical Engineering.

[74]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[75]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[76]  Alison L. Marsden,et al.  SimVascular 2.0: an Integrated Open Source Pipeline for Image-Based Cardiovascular Modeling and Simulation , 2015 .

[77]  T. Hughes,et al.  Effect of exercise on hemodynamic conditions in the abdominal aorta. , 1999, Journal of vascular surgery.

[78]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[79]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[80]  Charles A. Taylor,et al.  Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries , 2006 .

[81]  Hyung Jin Sung,et al.  Simulation of flexible filaments in a uniform flow by the immersed boundary method , 2007, J. Comput. Phys..

[82]  R. Hiptmair,et al.  MULTIGRID METHOD FORH(DIV) IN THREE DIMENSIONS , 1997 .

[83]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[84]  Adarsh Krishnamurthy,et al.  Direct immersogeometric fluid flow analysis using B-rep CAD models , 2016, Comput. Aided Geom. Des..

[85]  Douglas N. Arnold,et al.  Quadrilateral H(div) Finite Elements , 2004, SIAM J. Numer. Anal..

[86]  Isabelle Ramière,et al.  Convergence analysis of the Q1‐finite element method for elliptic problems with non‐boundary‐fitted meshes , 2008 .

[87]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[88]  John A. Evans Divergence-free B-spline discretizations for viscous incompressible flows , 2011 .

[89]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[90]  F. Sotiropoulos,et al.  Comparative hemodynamics in an aorta with bicuspid and trileaflet valves , 2015 .

[91]  Stein K. F. Stoter,et al.  The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements , 2016 .

[92]  M. Sacks,et al.  Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation. , 2014, Journal of biomechanics.

[93]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[94]  Christina Kluge,et al.  Fluid Structure Interaction , 2016 .

[95]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[96]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[97]  Jean-Luc Guermond,et al.  High-Order Time Stepping for the Incompressible Navier-Stokes Equations , 2015, SIAM J. Sci. Comput..

[98]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[99]  Sedat Biringen,et al.  Spatial numerical simulation of boundary layer transition - Effects of a spherical particle , 1996 .

[100]  Yuri Bazilevs,et al.  Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .

[101]  Anindya Ghoshal,et al.  An interactive geometry modeling and parametric design platform for isogeometric analysis , 2015, Comput. Math. Appl..

[102]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[103]  L. Sirovich,et al.  Modeling a no-slip flow boundary with an external force field , 1993 .

[104]  Matteo Astorino,et al.  Fluid-structure interaction and multi-body contact. Application to aortic valves , 2009 .

[105]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[106]  Leo G. Rebholz,et al.  Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection , 2012 .

[107]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[108]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[109]  F P T Baaijens,et al.  A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. , 2003, Journal of biomechanics.

[110]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[111]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[112]  D. J. Benson,et al.  Patient-specific isogeometric structural analysis of aortic valve closure , 2015 .

[113]  Fotis Sotiropoulos,et al.  A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains , 2015, J. Comput. Phys..

[114]  Rostislav Khlebnikov,et al.  CRIMSON: Towards a Software Environment for Patient-Specific Blood Flow Simulation for Diagnosis and Treatment , 2015, CLIP@MICCAI.

[115]  Patrick D. Anderson,et al.  A fluid-structure interaction method with solid-rigid contact for heart valve dynamics , 2006, J. Comput. Phys..

[116]  Hyung Jin Sung,et al.  Flapping dynamics of an inverted flag in a uniform flow , 2015 .

[117]  J. Tinsley Oden,et al.  Verification and validation in computational engineering and science: basic concepts , 2004 .

[118]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[119]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[120]  Antonio J. Gil,et al.  On continuum immersed strategies for Fluid-Structure Interaction , 2012 .

[121]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[122]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[123]  M. Fortin,et al.  Finite Elements for the Stokes Problem , 2008 .

[124]  Charles S. Peskin,et al.  Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries , 1993 .

[125]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[126]  P J Dionne,et al.  Three‐Dimensional Coupled Fluid‐Structure Simulation of Pericardial Bioprosthetic Aortic Valve Function , 1997, ASAIO journal.

[127]  John A. Evans,et al.  Stability and Conservation Properties of Collocated Constraints in Immersogeometric Fluid-Thin Structure Interaction Analysis , 2015 .

[128]  G. Burton Sobolev Spaces , 2013 .

[129]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[130]  André Haufe,et al.  Advanced Airbagsimulation using Fluid-Structure-Interaction and the Eulerian Method in LS-DYNA , 2004 .

[131]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[132]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[133]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[134]  D. Arnold Finite Element Exterior Calculus , 2018 .

[135]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[136]  Josef Kiendl,et al.  Isogeometric Analysis and Shape Optimal Design of Shell Structures , 2011 .

[137]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[138]  Boyce E. Griffith,et al.  Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions , 2012, International journal for numerical methods in biomedical engineering.

[139]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[140]  Dominik Schillinger,et al.  The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models , 2015 .

[141]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[142]  Youli Mao,et al.  Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations , 2015, J. Num. Math..