The steric nature of the bite angle.

Twisted! We show, based on DFT analyses, that the well-known dependence of a catalyst's activity in bond activation on the ligand–metal–ligand angle, or bite angle, has a primarily steric origin, not an electronic one. Thus, by bending or twisting the catalyst a priori, one avoids unfavorable nonbonded interactions with the substrate (see figure).

[1]  L. P. Wolters,et al.  Reaction Coordinates and the Transition-Vector Approximation to the IRC. , 2008, Journal of chemical theory and computation.

[2]  F. Matthias Bickelhaupt,et al.  PyFrag—Streamlining your reaction path analysis , 2008, J. Comput. Chem..

[3]  K. Morokuma,et al.  Critical Effect of Phosphane Ligands on the Mechanism of Carbon–Carbon Bond Formation Involving Palladium(II) Complexes: A Theoretical Investigation of Reductive Elimination from Square‐Planar and T‐Shaped Species , 2007 .

[4]  Claude Y. Legault,et al.  Origin of regioselectivity in palladium-catalyzed cross-coupling reactions of polyhalogenated heterocycles. , 2007, Journal of the American Chemical Society.

[5]  Alireza Ariafard,et al.  Theoretical studies of the oxidative addition of PhBr to Pd(PX3)2 and Pd(X2PCH2CH2PX2) (X = Me, H, Cl) , 2007 .

[6]  F. Bickelhaupt,et al.  Transition-state energy and position along the reaction coordinate in an extended activation strain model. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  E. Baerends,et al.  Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry , 2007 .

[8]  F. Bickelhaupt,et al.  Oxidative Addition of the Chloromethane C-Cl Bond to Pd, an ab Initio Benchmark and DFT Validation Study. , 2006, Journal of chemical theory and computation.

[9]  F. Matthias Bickelhaupt,et al.  Oxidative addition of the ethane CC bond to Pd. An ab initio benchmark and DFT validation study , 2005, J. Comput. Chem..

[10]  D. Geerke,et al.  DFT benchmark study for the oxidative addition of CH4 to Pd. Performance of various density functionals , 2005 .

[11]  S. Shaik,et al.  What makes for a good catalytic cycle? A theoretical study of the role of an anionic palladium(0) complex in the cross-coupling of an aryl halide with an anionic nucleophile , 2005 .

[12]  M. Solà,et al.  Ab initio benchmark study for the oxidative addition of CH4 to Pd: importance of basis-set flexibility and polarization. , 2004, The Journal of chemical physics.

[13]  P. V. Leeuwen,et al.  Bite angle effects in diphosphine metal catalysts: steric or electronic?Based on the presentation given at Dalton Discussion No. 5, 10?12th April 2003, Noordwijkerhout, The Netherlands. , 2003 .

[14]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[15]  J. Reek,et al.  Ligand Bite Angle Effects in Metal-catalyzed C-C Bond Formation. , 2000, Chemical reviews.

[16]  F. Matthias Bickelhaupt,et al.  Understanding reactivity with Kohn–Sham molecular orbital theory: E2–SN2 mechanistic spectrum and other concepts , 1999, J. Comput. Chem..

[17]  M. Sugimoto,et al.  Is a Transition State Planar or Nonplanar in Oxidative Additions of C−H, Si−H, C−C, and Si−C σ-Bonds to Pt(PH3)2? A Theoretical Study , 1998 .

[18]  S. Chu,et al.  Theoretical Study of Oxidative Addition and Reductive Elimination of 14-Electron d10 ML2 Complexes: A ML2 + CH4 (M = Pd, Pt; L = CO, PH3, L2 = PH‘2CH2CH2PH2) Case Study , 1998 .

[19]  E. Baerends,et al.  Theoretical Investigation on Base-Induced 1,2-Eliminations in the Model System F- + CH3CH2F. The Role of the Base as Catalyst , 1993 .

[20]  P. Hofmann,et al.  Synthese und Molekülgeometrie von Dichloro[η2-bis(di-r-butylphosphino)methan]pIatin(II), Pt(dtbpm)Cl2. Die Elektronenstruktur von 1,3-Diphosphaplatinacyclobutan-Fragmenten / Synthesis and Molecular Structure of Dichloro[η2-bis(di-t-butylphosphino)methane]platinum(II), Pt(dtbpm)Cl2. The Electronic St , 1987 .

[21]  S. Shaik,et al.  Relationships between geometries and energies of identity SN2 transition states: the dominant role of the distortion energy and its origin , 1985 .

[22]  W. Goddard,et al.  Theoretical studies of oxidative addition and reductive elimination: hydrogen + diphosphineplatinum .fwdarw. dihydridodiphosphineplatinum , 1984 .

[23]  S. Otsuka Chemistry of platinum and palladium compounds of bulky phosphines , 1980 .

[24]  Peter Dierkes,et al.  The bite angle makes the difference: a practical ligand parameter for diphosphine ligands , 1999 .

[25]  M. Sugimoto,et al.  Oxidative addition of a C-H σ bond to M(PH3)2 (M = Pd or Pt). An ab initio molecular orbital study on the chelate phosphine effect , 1997 .