De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure

[1]  U. Roessner,et al.  Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress , 2016, Journal of experimental botany.

[2]  U. Roessner,et al.  Salt-stress induced alterations in the root lipidome of two barley genotypes with contrasting responses to salinity. , 2016, Functional plant biology : FPB.

[3]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[4]  Chengzhang Wang,et al.  De Novo Characterization of Fall Dormant and Nondormant Alfalfa (Medicago sativa L.) Leaf Transcriptome and Identification of Candidate Genes Related to Fall Dormancy , 2015, PloS one.

[5]  H. Piepho,et al.  A High-Resolution Tissue-Specific Proteome and Phosphoproteome Atlas of Maize Primary Roots Reveals Functional Gradients along the Root Axes1[OPEN] , 2015, Plant Physiology.

[6]  Peter B. McGarvey,et al.  UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches , 2014, Bioinform..

[7]  Richard D. Hayes,et al.  The genome of Eucalyptus grandis , 2014, Nature.

[8]  Amborella Genome The Amborella Genome and the Evolution of Flowering Plants , 2013, Science.

[9]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[10]  Michael Ott,et al.  De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity , 2013 .

[11]  R. E. Sharp,et al.  Genetic variation in the root growth response of barley genotypes to salinity stress. , 2013, Functional plant biology : FPB.

[12]  Roger P. Hellens,et al.  De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana , 2013, PloS one.

[13]  P. Benfey,et al.  High-resolution metabolic mapping of cell types in plant roots , 2013, Proceedings of the National Academy of Sciences.

[14]  M. Delledonne,et al.  De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity , 2013, BMC Genomics.

[15]  L. Hennighausen,et al.  Comprehensive meta-analysis of Signal Transducers and Activators of Transcription (STAT) genomic binding patterns discerns cell-specific cis-regulatory modules , 2013, BMC Genomics.

[16]  Mihaela M. Martis,et al.  A physical, genetic and functional sequence assembly of the barley genome. , 2022 .

[17]  Tim H. Brom,et al.  A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data , 2012, 1203.4802.

[18]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[19]  J. Abadía,et al.  Spatially resolved analysis of small molecules by matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI). , 2012, The New phytologist.

[20]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[21]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[22]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[23]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[24]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[25]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[26]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[27]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[28]  M. Hrmova,et al.  A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait , 2010, Journal of experimental botany.

[29]  B. Baum,et al.  Control of somatic embryogenesis and embryo development by AP2 transcription factors , 2010, Plant Molecular Biology.

[30]  E. Tavakkoli,et al.  The response of barley to salinity stress differs between hydroponic and soil systems , 2010 .

[31]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[32]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[33]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[34]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[35]  Widodo,et al.  Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance , 2009, Journal of experimental botany.

[36]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[37]  K. Kosová,et al.  Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). , 2008, Journal of plant physiology.

[38]  Daniel L. Mace,et al.  Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress , 2008, Science.

[39]  M. Tester,et al.  Mechanisms of salinity tolerance. , 2008, Annual review of plant biology.

[40]  Daniel L. Mace,et al.  A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns , 2007, Science.

[41]  V. Lumbreras,et al.  Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana , 2007, Plant Cell Reports.

[42]  David W Mount,et al.  Using the Basic Local Alignment Search Tool (BLAST). , 2007, CSH protocols.

[43]  Yiyue Zhang,et al.  SDIR1 Is a RING Finger E3 Ligase That Positively Regulates Stress-Responsive Abscisic Acid Signaling in Arabidopsis[W] , 2007, The Plant Cell Online.

[44]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[45]  Z. Fei,et al.  Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. , 2007, Journal of experimental botany.

[46]  John A. Hamilton,et al.  The TIGR Rice Genome Annotation Resource: improvements and new features , 2006, Nucleic Acids Res..

[47]  A. Harfouche,et al.  The Arabidopsis Tetratricopeptide Repeat-Containing Protein TTL1 Is Required for Osmotic Stress Responses and Abscisic Acid Sensitivity1[W] , 2006, Plant Physiology.

[48]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[49]  Shuhei Yamamoto,et al.  Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. , 2005, The Plant journal : for cell and molecular biology.

[50]  Frédérique Bitton,et al.  Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. , 2005, The Plant journal : for cell and molecular biology.

[51]  T. Koshiba,et al.  A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. , 2004, Plant & cell physiology.

[52]  M. Sauer,et al.  Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. , 2004, Annals of botany.

[53]  F. Menting,et al.  Chapter 12 – Diversity in ex situ genebank collections of barley , 2003 .

[54]  P. Langridge,et al.  Mapping and QTL analysis of the barley population Clipper × Sahara , 2003 .

[55]  P. A. Davies,et al.  Mapping and QTL analysis of the barley population Amagi Nijo × WI2585 , 2003 .

[56]  D. Shasha,et al.  A Gene Expression Map of the Arabidopsis Root , 2003, Science.

[57]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[58]  A. Miyao,et al.  Three Distinct Rice Cellulose Synthase Catalytic Subunit Genes Required for Cellulose Synthesis in the Secondary Wall1 , 2003, Plant Physiology.

[59]  Ulrich Schurr,et al.  Expansion dynamics, metabolite composition and substance transfer of the primary root growth zone of Zea mays L. grown in different external nutrient availabilities , 2003 .

[60]  J. Delcour,et al.  TAXI type endoxylanase inhibitors in different cereals. , 2003, Journal of agricultural and food chemistry.

[61]  V. Sharma,et al.  Ectopic Expression of BABY BOOM Triggers a Conversion from Vegetative to Embryonic Growth Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001941. , 2002, The Plant Cell Online.

[62]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[63]  P. Proost,et al.  Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants , 2000, Planta.

[64]  C. Kim,et al.  The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Edward P. Glenn,et al.  Salt Tolerance and Crop Potential of Halophytes , 1999 .

[66]  M. Evans,et al.  Specialized Zones of Development in Roots , 1995, Plant physiology.

[67]  N. Raikhel,et al.  Lectins, lectin genes, and their role in plant defense. , 1991, The Plant cell.

[68]  C. Pikaard,et al.  Molecular characterization of the patatin multigene family of potato. , 1988, Gene.

[69]  E. Maas,et al.  CROP SALT TOLERANCE–CURRENT ASSESSMENT , 1977 .

[70]  Yutaka Sato,et al.  Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. , 2012, The Plant journal : for cell and molecular biology.

[71]  Ute Baumann,et al.  Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. , 2011, Molecular plant.