Effect of Surface Pressure on Oxygen Transfer across Molecular Monolayers at the Air/Water Interface: Scanning Electrochemical Microscopy Investigations Using a Mercury Hemispherical Microelectrode Probe

Investigations of the kinetics of molecular transfer across the liquid/gas interface and the effect of a molecular monolayer are of considerable interest as a model for certain biological and environmental processes. In this work, a combined scanning electrochemical microscopy (SECM)−Langmuir trough technique has been used to investigate the effect of the chemical character and mechanical compression of molecular monolayers on the rate of oxygen transfer across the air/water (A/W) interface. Specifically, monolayers comprising the fatty alcohol 1-octadecanol and the phospholipid l-α-dipalmitoyl phosphatidic acid were considered. A mercury hemispherical microelectrode probe has been used to measure interfacial kinetics in SECM, and a numerical model has been developed for mass transport in this configuration to allow quantitative analysis of experimental data. The results obtained suggest that, for both monolayers, the oxygen-transfer rate across the interface decreased compared to that across the clean in...