Perfect plasticity and hyperelastic models for isotropic materials

We study the introduction of multi-dimensional plasticity in hyperelastic models. We construct a potential (the internal energy) which models the isotropic elastic and perfectly plastic behavior of materials. We apply this method to the analysis of the flyer-plate experiment. The mathematical analysis exhibits a strong similarity with phase transition issues. Numerical experiments confirm the theoretical analysis.

[1]  P. M. Naghdi,et al.  A critical review of the state of finite plasticity , 1990 .

[2]  Richard Saurel,et al.  Modelling wave dynamics of compressible elastic materials , 2008, J. Comput. Phys..

[3]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[4]  David J. Steigmann,et al.  On Isotropic, Frame‐Invariant, Polyconvex Strain‐Energy Functions , 2003 .

[5]  C. M. Lund,et al.  A constitutive model for strain rates from 10−4 to 106 s−1 , 1989 .

[6]  Bruno Despres,et al.  A Geometrical Approach to Nonconservative Shocks and Elastoplastic Shocks , 2007 .

[7]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[8]  Stéphane Jaouen,et al.  Etude mathematique et numerique de stabilite pour des modeles hydrodynamiques avec transition de phase , 2001 .

[9]  R. Menikoff,et al.  The Riemann problem for fluid flow of real materials , 1989 .

[10]  David H. Sharp,et al.  A conservative formulation for plasticity , 1992 .

[11]  E. I. Romenskii Hypoelastic form of equations in nonlinear elasticity theory , 1974 .

[12]  Phillip Colella,et al.  A high-order Eulerian Godunov method for elastic-plastic flow in solids , 2001 .

[13]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[14]  G. Miller,et al.  An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics , 2004 .

[15]  Phillip Colella,et al.  A higher-order Godunov method for modeling finite deformation in elastic-plastic solids , 1991 .

[16]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[17]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[18]  Relation de Rankine Hugoniot faible pour les lois de conservation avec contraintes primitives convexes , 2006 .

[19]  S. K. Godunov,et al.  Nonstationary equations of nonlinear elasticity theory in eulerian coordinates , 1972 .

[20]  David H. Sharp,et al.  A conservative Eulerian formulation of the equations for elastic flow , 1988 .

[21]  D. S. Drumheller,et al.  Introduction to Wave Propagation in Nonlinear Fluids and Solids , 1998 .

[22]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[23]  Henri Gouin,et al.  Variational Principle Involving the Stress Tensor in Elastodynamics , 2008 .