Numerical simulation of coarsening in binary solder alloys

Coarsening in solder alloys is a widely accepted indicator for possible failure of joints in electronic devices. Based on the well-established Cahn–Larche model with logarithmic chemical energy density (Dreyer and Muller, 2001) [20], we present a computational framework for the efficient and reliable simulation of coarsening in binary alloys. Main features are adaptive mesh refinement based on hierarchical error estimates, fast and reliable algebraic solution by multigrid and Schur–Newton multigrid methods, and the quantification of the coarsening speed by the temporal growth of mean phase radii. We provide a detailed description and a numerical assessment of the algorithm and its different components, together with a practical application to a eutectic AgCu brazing alloy.

[1]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[2]  Charles M. Elliott,et al.  `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .

[3]  Harald Garcke,et al.  Numerical approximation of the Cahn-Larché equation , 2005, Numerische Mathematik.

[4]  Joel Lebowitz,et al.  Phase Segregation Dynamics in Particle Systems with Long Range Interactions II: Interface Motion , 1997, SIAM J. Appl. Math..

[5]  Ralf Kornhuber,et al.  Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..

[6]  Wolfgang H. Müller,et al.  Modeling diffusional coarsening in eutectic tin/lead solders: a quantitative approach , 2001 .

[7]  K. Weinberg,et al.  Numerical simulation of diffusion induced phase separation and coarsening in binary alloys , 2011 .

[8]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[9]  Qingsong Zou,et al.  Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems , 2010, Math. Comput..

[10]  Oliver Sander,et al.  Truncated Nonsmooth Newton Multigrid Methods for Convex Minimization Problems , 2009 .

[11]  Harald Garcke,et al.  Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix , 1997 .

[12]  Carsten Gräser,et al.  Convex minimization and phase field models , 2011 .

[13]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[14]  F. Otto,et al.  Upper Bounds on Coarsening Rates , 2002 .

[15]  Walter Zulehner,et al.  A Class of Smoothers for Saddle Point Problems , 2000, Computing.

[16]  Wolfgang H. Müller,et al.  A study of the coarsening in tin/lead solders , 2000 .

[17]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[18]  T. Merkle The Cahn-Larché system : a model for spinodal decomposition in eutectic solder ; modelling, analysis and simulation , 2005 .

[19]  Harald Garcke,et al.  The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies , 2001 .

[20]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[21]  Bodo Erdmann Ralf Kornhuber Adaptive Multilevel Methods in Three Space Dimensions Folkmar Bornemann , 2011 .

[22]  John W. Cahn,et al.  Thermochemical equilibrium of multiphase solids under stress , 1978 .

[23]  Harald Garcke,et al.  ON MATHEMATICAL MODELS FOR PHASE SEPARATION IN ELASTICALLY STRESSED SOLIDS , 2007 .

[24]  Joachim Schöberl,et al.  On Schwarz-type Smoothers for Saddle Point Problems , 2003, Numerische Mathematik.

[25]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[26]  Amy Novick-Cohen,et al.  Upper Bounds for Coarsening for the Deep Quench Obstacle Problem , 2010 .

[27]  Ralf Kornhuber,et al.  On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints , 2007 .

[28]  Wolfgang H. Müller,et al.  Morphology changes in solder joints--experimental evidence and physical understanding , 2004, Microelectron. Reliab..

[29]  Ralf Kornhuber,et al.  On Hierarchical Error Estimators for Time-Discretized Phase Field Models , 2010 .

[30]  Ralf Kornhuber,et al.  Nonsmooth Schur–Newton methods for multicomponent Cahn–Hilliard systems , 2015 .

[31]  Amy Novick-Cohen,et al.  Upper bounds for coarsening for the degenerate Cahn-Hilliard equation , 2009 .

[32]  Oliver Sander,et al.  The dune-subgrid module and some applications , 2009, Computing.

[33]  Charles M. Elliott,et al.  Numerical analysis of a model for phase separation of a multi- component alloy , 1996 .

[34]  P. Colli,et al.  On a model for phase separation in binary alloys driven by mechanical effects , 2001 .

[35]  Ludmil T. Zikatanov,et al.  A sharp convergence estimate for the method of subspace corrections for singular systems of equations , 2007, Math. Comput..

[36]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[37]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[38]  Harald Garcke,et al.  Mechanical Effects in the Cahn-Hilliard Model: A Review on Mathematical Results , 2005 .

[39]  Giambattista Giacomin,et al.  Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits , 1997, comp-gas/9705001.

[40]  Felix Otto,et al.  Coarsening Rates in Off-Critical Mixtures , 2006, SIAM J. Math. Anal..

[41]  O. Zienkiewicz,et al.  The hierarchical concept in finite element analysis , 1983 .

[42]  Carsten Gräser Globalization of Nonsmooth Newton Methods for Optimal Control Problems , 2008 .

[43]  Harald Garcke,et al.  Transient coarsening behaviour in the Cahn–Hilliard model , 2003 .

[44]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[45]  Ralf Kornhuber,et al.  Time discretizations of anisotropic Allen–Cahn equations , 2013 .

[46]  Jeffrey S. Ovall,et al.  An efficient, reliable and robust error estimator for elliptic problems in R3 , 2011 .

[47]  I. Müller,et al.  Fundamentals of Thermodynamics and Applications , 2009 .

[48]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[49]  Jürgen Bey,et al.  Simplicial grid refinement: on Freudenthal's algorithm and the optimal number of congruence classes , 2000, Numerische Mathematik.

[50]  Lavinia Sarbu,et al.  Primal‐dual active set methods for Allen–Cahn variational inequalities with nonlocal constraints , 2010 .

[51]  An energy method for the strongly nonlinear Cahn-Larché equation system , 2003 .

[52]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic variational inequalities , 1996 .

[53]  T. Böhme Investigations of Microstructural Changes in Lead-Free Solder Alloys by Means of Phase Field Theories , 2008 .

[54]  Kunibert G. Siebert,et al.  A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements , 2007, SIAM J. Optim..

[55]  R. Hoppe,et al.  Adaptive multilevel methods for obstacle problems , 1994 .

[56]  Harald Garcke,et al.  On Cahn—Hilliard systems with elasticity , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[57]  Andreas Dedner,et al.  A Generic Grid Interface for Adaptive and Parallel Scientific Computing. Part II: Implementation and Tests in DUNE , 2007 .

[58]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[59]  Andreas Veeser,et al.  Hierarchical error estimates for the energy functional in obstacle problems , 2011, Numerische Mathematik.

[60]  Carsten Gräser Nonsmooth Schur-Newton methods for nonsmooth saddle point problems. , 2013 .