SMOS and Aquarius/SAC-D Missions: The Era of Spaceborne Salinity Measurements is About to Begin

The SMOS and Aquarius/SAC-D are explorer missions that aim to measure ocean salinity for the first time from space, and usher in the new era of ocean remote sensing. Here we provide a brief description of the evolution and development of the missions since the last Oceans from Space a decade ago. Salinity remote sensing is done in the microwave frequency band centered at 1.413 GHz (L-band). The two missions apply very different technical approaches. SMOS sensor is phased array synthetic aperture radiometer, whereas the Aquarius sensor is a real aperture 3-beam push broom design with both radiometer and radar measurements to better correct for the surface roughness effects. Both will require data averaging to map surface salinity at 150–200 km resolution and monthly time scales needed to understand the links between ocean circulation, changes in the water cycle, and climate. These pathfinder missions will likely provide a decade of salinity data to evaluate at the 2020 Oceans from Space meeting, and will guide the future technology development to improve resolution and accuracy.

[1]  Jacqueline Boutin,et al.  Resolving the global surface salinity field and variations by blending satellite and in situ observations , 2010 .

[2]  Adriano Camps,et al.  A new empirical model of sea surface microwave emissivity for salinity remote sensing , 2004 .

[3]  Jacqueline Boutin,et al.  Influence of sea surface emissivity model parameters at L-band for the estimation of salinity , 2002 .

[4]  Y. Kerr,et al.  Selecting an optimal configuration for the Soil Moisture and Ocean Salinity mission , 2003 .

[5]  David M. Le Vine,et al.  Impact of the Sun on remote sensing of sea surface salinity from space , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[6]  C. Ruf,et al.  Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth , 1988 .

[7]  David M. Le Vine,et al.  The effect of the ionosphere on remote sensing of sea surface salinity from space: absorption and emission at L band , 2002, IEEE Trans. Geosci. Remote. Sens..

[8]  Wallace Broeker,et al.  The Great Ocean Conveyor , 1991 .

[9]  David M. Le Vine,et al.  Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHz , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[10]  Simon Yueh,et al.  Estimates of Faraday rotation with passive microwave polarimetry for microwave remote sensing of Earth surfaces , 2000, IEEE Trans. Geosci. Remote. Sens..

[11]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  S. Häkkinen,et al.  Shifting surface currents in the northern North Atlantic Ocean , 2009 .

[13]  Luis Enrique,et al.  The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[14]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977, IEEE Journal of Oceanic Engineering.

[15]  Jacqueline Boutin,et al.  An Iterative Convergence Algorithm to Retrieve Sea Surface Salinity from SMOS L-band Radiometric Measurements , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[16]  Gary S. E. Lagerloef,et al.  Introduction to the special section: The role of surface salinity on upper ocean dynamics, air‐sea interaction and climate , 2002 .

[17]  Simon Yueh,et al.  The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge , 2008 .

[18]  Calvin T. Swift,et al.  Considerations for Microwave Remote Sensing of Ocean-Surface Salinity , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Yann Kerr,et al.  SMOS: The Challenging Sea Surface Salinity Measurement From Space , 2010, Proceedings of the IEEE.

[20]  James P. Hollinger,et al.  Passive Microwave Measurements of Sea Surface Roughness , 1971 .

[21]  Adriano Camps,et al.  The determination of surface salinity with the European SMOS space mission , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Carolina Gabarró,et al.  Toward an Optimal SMOS Ocean Salinity Inversion Algorithm , 2009, IEEE Geoscience and Remote Sensing Letters.

[23]  Albert Aguasca,et al.  Seawater dielectric permittivity model from measurements at L band , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[24]  David M. Le Vine,et al.  Galactic noise and passive microwave remote sensing from space at L-band , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[25]  A. Gordon,et al.  Sea Surface Salinity Trends over Fifty Years Within the Subtropical North Atlantic , 2008 .

[26]  David M. Le Vine,et al.  Chapter 19 Sea surface salinity: Toward an operational remote-sensing system , 2000 .

[27]  Jacqueline Boutin,et al.  Overview of the SMOS Sea Surface Salinity Prototype Processor , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Karl K. Turekian,et al.  Encyclopedia of Ocean Sciences , 2001 .

[29]  P. Stott,et al.  Detection and attribution of Atlantic salinity changes , 2008 .

[30]  D. Halpern,et al.  Satellites, Oceanography and Society , 1994 .

[31]  Adriano Camps,et al.  Determination of the Sea Surface Salinity Error Budget in the Soil Moisture and Ocean Salinity Mission , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Yann Kerr,et al.  Exploring the water cycle of the blue planet. The Soil Moisture and Ocean Salinity Mission , 2009 .

[33]  Simon Yueh,et al.  Passive active L- and S-band (PALS) microwave sensor for ocean salinity and soil moisture measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[34]  Simon Yueh,et al.  Error sources and feasibility for microwave remote sensing of ocean surface salinity , 2001, IEEE Trans. Geosci. Remote. Sens..

[35]  Manuel Martín-Neira,et al.  SMOS: The Payload , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[36]  David M. Le Vine,et al.  Aquarius: An Instrument to Monitor Sea Surface Salinity From Space , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[37]  G. Lagerloef,et al.  Satellite Measurements of Salinity , 2001 .

[38]  Gary S. E. Lagerloef,et al.  Sea Surface Salinity: The Next Remote Sensing Challenge , 1995 .

[39]  Jacqueline Boutin,et al.  Surface Salinity Retrieved from SMOS Measurements over the Global Ocean: Imprecisions Due to Sea Surface Roughness and Temperature Uncertainties , 2004 .

[40]  E. Baker,et al.  Exploring the Submarine Ring of Fire: Mariana Arc - Western Pacific , 2007 .

[41]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[42]  Manuel Martín-Neira,et al.  Polarimetric mode of MIRAS , 2002, IEEE Trans. Geosci. Remote. Sens..

[43]  Thomas Meissner,et al.  The complex dielectric constant of pure and sea water from microwave satellite observations , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[44]  S. Bacon,et al.  Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas , 2008 .

[45]  Adriano Camps,et al.  The visibility function in interferometric aperture synthesis radiometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[46]  C. Prigent,et al.  New permittivity measurements of seawater , 1998 .

[47]  Simon Yueh,et al.  High-stability L-band radiometer measurements of saltwater , 2004, IEEE Transactions on Geoscience and Remote Sensing.