Feature - Estimation via markov chain monte carlo
暂无分享,去创建一个
[1] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[2] S. D. Hill,et al. Least-informative Bayesian prior distributions for finite samples based on information theory , 1990 .
[3] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[4] Nicholas G. Polson,et al. A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .
[5] J. Besag,et al. Bayesian Computation and Stochastic Systems , 1995 .
[6] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[7] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[8] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[9] O. Cappé,et al. Markov Chain Monte Carlo: 10 Years and Still Running! , 2000 .
[10] J. L. Maryak,et al. Use of the Kalman filter for inference in state-space models with unknown noise distributions , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).
[11] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[12] S. Chib. Marginal Likelihood from the Gibbs Output , 1995 .
[13] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[14] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[15] M. Evans,et al. Methods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems , 1995 .
[16] James C. Spall. The Kantorovich inequality for error analysis of the Kalman filter with unknown noise distributions , 1995, Autom..
[17] G. Casella,et al. Explaining the Gibbs Sampler , 1992 .
[18] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[19] J. Geweke,et al. Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling , 2001 .
[20] D. Mayne,et al. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .
[21] L. A. Breyer,et al. Convergence of simulated annealing using Foster-Lyapunov criteria , 2001, Journal of Applied Probability.
[22] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[23] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[24] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[25] Arnaud Doucet,et al. Stochastic sampling algorithms for state estimation of jump Markov linear systems , 2000, IEEE Trans. Autom. Control..
[26] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .