Feature - Estimation via markov chain monte carlo

Markov chain Monte Carlo (MCMC) is a powerful means for generating random samples that can be used in computing statistical estimates and marginal and conditional probabilities. MCMC methods rely on dependent (Markov) sequences having a limiting distribution corresponding to a distribution of interest. This article is a survey of popular implementations of MCMC, focusing particularly on the two most popular specific implementations of MCMC: Metropolis-Hastings (M-H) and Gibbs sampling. Our aim is to provide the reader with some of the central motivation and the rudiments needed for a straightforward application.

[1]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[2]  S. D. Hill,et al.  Least-informative Bayesian prior distributions for finite samples based on information theory , 1990 .

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[5]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[9]  O. Cappé,et al.  Markov Chain Monte Carlo: 10 Years and Still Running! , 2000 .

[10]  J. L. Maryak,et al.  Use of the Kalman filter for inference in state-space models with unknown noise distributions , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[11]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[13]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[14]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[15]  M. Evans,et al.  Methods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems , 1995 .

[16]  James C. Spall The Kantorovich inequality for error analysis of the Kalman filter with unknown noise distributions , 1995, Autom..

[17]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[18]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[19]  J. Geweke,et al.  Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling , 2001 .

[20]  D. Mayne,et al.  Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .

[21]  L. A. Breyer,et al.  Convergence of simulated annealing using Foster-Lyapunov criteria , 2001, Journal of Applied Probability.

[22]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[23]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[24]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[25]  Arnaud Doucet,et al.  Stochastic sampling algorithms for state estimation of jump Markov linear systems , 2000, IEEE Trans. Autom. Control..

[26]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .