A review on computational modeling of instability and degradation issues of halide perovskite photovoltaic materials

[1]  Zhangjing Zhang,et al.  Stable and environmentally friendly perovskite solar cells induced by grain boundary engineering with self-assembled hydrogen-bonded porous frameworks , 2023, Nano Energy.

[2]  A. Amassian,et al.  A multiscale ion diffusion framework sheds light on the diffusion–stability–hysteresis nexus in metal halide perovskites , 2023, Nature Materials.

[3]  D. Ginger,et al.  Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells , 2023, Science.

[4]  H. Han,et al.  Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects , 2023, Advanced Functional Materials.

[5]  Md. Mer Mosharraf Hossain,et al.  An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells , 2023, Scientific Reports.

[6]  Byungwoo Park,et al.  Thermal degradation of the bulk and interfacial traps at 85 °C in perovskite photovoltaics. , 2023, Nanoscale.

[7]  W. Tsoi,et al.  Highly efficient p-i-n perovskite solar cells that endure temperature variations , 2023, Science.

[8]  F. Pezzimenti,et al.  Paths towards high perovskite solar cells stability using machine learning techniques , 2023, Solar Energy.

[9]  Jingshan Luo,et al.  Big data driven perovskite solar cell stability analysis , 2022, Nature Communications.

[10]  A. Tewari,et al.  Interval prediction machine learning models for predicting experimental thermal conductivity of high entropy alloys , 2022, Computational Materials Science.

[11]  T. Miyasaka,et al.  Degradation Mechanism of Halide Perovskite Crystals under Concurrent Light and Humidity Exposure , 2022, ACS Materials Letters.

[12]  Ruipeng Li,et al.  Interface Reconstruction from Ruddlesden–Popper Structures Impacts Stability in Lead Halide Perovskite Solar Cells , 2022, Advanced materials.

[13]  Mingdeng Wei,et al.  Grain Boundary Passivation Using D131 Organic Dye Molecule for Efficient and Thermally Stable Perovskite Solar Cells , 2022, ACS Sustainable Chemistry & Engineering.

[14]  Amir Hajibabaei,et al.  Challenges, Opportunities, and Prospects in Metal Halide Perovskites from Theoretical and Machine Learning Perspectives , 2022, Advanced Energy Materials.

[15]  Weili Yu,et al.  Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance , 2022, Nature Photonics.

[16]  Juan Meng,et al.  Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results , 2022, Journal of Energy Chemistry.

[17]  S. Meloni,et al.  Photoprotection in metal halide perovskites by ionic defect formation , 2022, Joule.

[18]  P. Kamat,et al.  Hole Trapping in Halide Perovskites Induces Phase Segregation , 2022, Accounts of Materials Research.

[19]  Xingzhu Wang,et al.  Bifunctional Passivation through Fluoride Treatment for Highly Efficient and Stable Perovskite Solar Cells , 2022, Advanced Energy Materials.

[20]  Wencong Lu,et al.  Inverse Design of Hybrid Organic–Inorganic Perovskites with Suitable Bandgaps via Proactive Searching Progress , 2022, ACS omega.

[21]  Geun Ho Gu,et al.  Perovskite synthesizability using graph neural networks , 2022, npj Computational Materials.

[22]  Chenxin Ran,et al.  Bi-Linkable Reductive Cation as Molecular Glue for One Year Stable Sn-Based Perovskite Solar Cells , 2022, ACS Applied Energy Materials.

[23]  E. Mosconi,et al.  Stability of Tin- versus Lead-Halide Perovskites: Ab Initio Molecular Dynamics Simulations of Perovskite/Water Interfaces , 2022, The journal of physical chemistry letters.

[24]  Haizheng Zhong,et al.  What Happens When Halide Perovskites Meet with Water? , 2022, The journal of physical chemistry letters.

[25]  A. Walsh,et al.  Environmental Stability of Crystals: A Greedy Screening , 2022, Chemistry of materials : a publication of the American Chemical Society.

[26]  Pengwan Chen,et al.  Recent strategies to improve moisture stability in metal halide perovskites materials and devices , 2022, Journal of Energy Chemistry.

[27]  Shurong Wang,et al.  A critical review on the moisture stability of halide perovskite films and solar cells , 2022, Chemical Engineering Journal.

[28]  Dong Suk Kim,et al.  Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells , 2022, Science.

[29]  Beyza Yılmaz,et al.  Efficiency and Stability Analysis of 2D/3D Perovskite Solar Cells Using Machine Learning , 2022, Energy Technology.

[30]  Hao Wei,et al.  Multi‐Level Passivation of MAPbI3 Perovskite for Efficient and Stable Photovoltaics , 2021, Advanced Functional Materials.

[31]  Jay B. Patel,et al.  Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility , 2021, Nature Communications.

[32]  S. Kinge,et al.  High-efficiency perovskite photovoltaic modules achieved via cesium doping , 2021, Chemical Engineering Journal.

[33]  M. Abdellah,et al.  Charge Carrier Diffusion Dynamics in Multisized Quaternary Alkylammonium-Capped CsPbBr3 Perovskite Nanocrystal Solids , 2021, ACS applied materials & interfaces.

[34]  Huanping Zhou,et al.  Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression , 2021, Journal of Energy Chemistry.

[35]  W. Saidi,et al.  Grain Boundaries in Methylammonium Lead Halide Perovskites Facilitate Water Diffusion , 2021, Advanced Energy and Sustainability Research.

[36]  Changying Zhao,et al.  Molecular Insights into Water Vapor Adsorption and Interfacial Moisture Stability of Hybrid Perovskites for Robust Optoelectronics , 2021 .

[37]  Zehua Chen,et al.  Effect of Light-Induced Halide Segregation on the Performance of Mixed-Halide Perovskite Solar Cells , 2021, ACS applied energy materials.

[38]  Yanfa Yan,et al.  Mitigating ion migration in perovskite solar cells , 2021, Trends in Chemistry.

[39]  Jinsong Huang,et al.  Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability , 2021, Nature Energy.

[40]  Thomas J. Macdonald,et al.  Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide , 2021, Nature Communications.

[41]  C. Brabec,et al.  Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning , 2021, Nature Communications.

[42]  A. V. van Duin,et al.  Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3: A Reactive Force Field Molecular Dynamics Study , 2021, The journal of physical chemistry letters.

[43]  Yifeng Chen,et al.  Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization , 2021 .

[44]  Beyza Yılmaz,et al.  Critical review of machine learning applications in perovskite solar research , 2021 .

[45]  I. Tranca,et al.  Compositional effect on water adsorption on metal halide perovskites , 2021, Applied Surface Science.

[46]  Wencong Lu,et al.  Machine learning for perovskite materials design and discovery , 2021, npj Computational Materials.

[47]  B. Uberuaga,et al.  A Machine Learning Approach for the Prediction of Formability and Thermodynamic Stability of Single and Double Perovskite Oxides , 2021, Chemistry of Materials.

[48]  Yongli Gao,et al.  Ion Migration Accelerated Reaction between Oxygen and Metal Halide Perovskites in Light and Its Suppression by Cesium Incorporation , 2021, Advanced Energy Materials.

[49]  Geoffroy Hautier,et al.  Chemist versus Machine: Traditional Knowledge versus Machine Learning Techniques , 2020, Trends in Chemistry.

[50]  Sergei V. Kalinin,et al.  Chemical Robotics Enabled Exploration of Stability in Multicomponent Lead Halide Perovskites via Machine Learning , 2020 .

[51]  S. Bordas,et al.  Machine learning approaches to identify and design low thermal conductivity oxides for thermoelectric applications , 2020, Data-Centric Engineering.

[52]  S. Russo,et al.  Molecular mechanisms of thermal instability in hybrid perovskite light absorbers for photovoltaic solar cells , 2020 .

[53]  S. Meloni,et al.  Defect Dynamics in MAPbI 3 Polycrystalline Films: The Trapping Effect of Grain Boundaries , 2020 .

[54]  Rishi E. Kumar,et al.  Microscopic Degradation in Formamidinium-Cesium Lead Iodide Perovskite Solar Cells under Operational Stressors , 2020 .

[55]  W. Fang,et al.  Why Oxygen Increases Carrier Lifetimes but Accelerates Degradation of CH3NH3PbI3 Under Light Irradiation: Time-Domain Ab Initio Analysis. , 2020, Journal of the American Chemical Society.

[56]  Haizhong Guo,et al.  Phase stability and impact of water on CsSnI3 perovskite , 2020, Applied Physics Express.

[57]  Ian M. Pendleton,et al.  Robot-Accelerated Perovskite Investigation and Discovery , 2020, Chemistry of Materials.

[58]  L. Cinà,et al.  Ion Migration‐Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells , 2020, Advanced Energy Materials.

[59]  Hongzhou Dong,et al.  Screening stable and metastable ABO3 perovskites using machine learning and the materials project , 2020 .

[60]  Jingfan Wang,et al.  Competing Dissolution Pathways and Ligand Passivation-Enhanced Interfacial Stability of Hybrid Perovskites with Liquid Water. , 2020, ACS applied materials & interfaces.

[61]  S. Meloni,et al.  The Role of Grain Boundaries on Ionic Defect Migration in Metal Halide Perovskites , 2020, Advanced Energy Materials.

[62]  S. Calero,et al.  Efficient modelling of ion structure and dynamics in inorganic metal halide perovskites , 2020, 2003.09360.

[63]  K. Lin,et al.  Enhanced moisture stability of cesium lead iodide perovskite solar cells - a first-principles molecular dynamics study. , 2020, Physical chemistry chemical physics : PCCP.

[64]  V. Berry,et al.  Cuboctahedral stability in Titanium halide perovskites via machine learning , 2020 .

[65]  B. Dunn,et al.  Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar Cells , 2020, Advanced materials.

[66]  R. Yıldırım,et al.  Machine learning analysis on stability of perovskite solar cells , 2020 .

[67]  Jun Hee Lee,et al.  Enhanced Moisture Stability by Butyldimethylsulfonium Cation in Perovskite Solar Cells , 2019, Advanced science.

[68]  B. Pradhan,et al.  Predictions and Strategies Learned from Machine Learning to Develop High‐Performing Perovskite Solar Cells , 2019, Advanced Energy Materials.

[69]  Raghvendra Mall,et al.  Learn and Match Molecular Cations for Perovskites. , 2019, The journal of physical chemistry. A.

[70]  Andrew L. Johnson,et al.  Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells , 2019, Energy & Environmental Science.

[71]  Mansoo Choi,et al.  An atomistic mechanism for the degradation of perovskite solar cells by trapped charge. , 2019, Nanoscale.

[72]  A. Aspuru-Guzik,et al.  Self-driving laboratory for accelerated discovery of thin-film materials , 2019, Science Advances.

[73]  O. Rubel,et al.  Unraveling the Water Degradation Mechanism of CH3NH3PbI3 , 2019, The Journal of Physical Chemistry C.

[74]  Lucy D. Whalley,et al.  Accumulation of Deep Traps at Grain Boundaries in Halide Perovskites , 2019, ACS Energy Letters.

[75]  A. Rappe,et al.  Water in hybrid perovskites: Bulk MAPbI3 degradation via super-hydrous state , 2019, APL Materials.

[76]  Yang Yang,et al.  Verification and mitigation of ion migration in perovskite solar cells , 2019, APL Materials.

[77]  William W. Yu,et al.  Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals , 2019, Nature Communications.

[78]  H. Ågren,et al.  Highly Controllable Synthesis and DFT Calculations of Double/Triple-Halide CsPbX3 (X = Cl, Br, I) Perovskite Quantum Dots: Application to Light-Emitting Diodes , 2019, Nanomaterials.

[79]  Ross D. Hoehn,et al.  Role of Water on the Rotational Dynamics of the Organic Methylammonium Cation: A First Principles Analysis , 2019, Scientific Reports.

[80]  Abdullah Al Mamun,et al.  A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells , 2019, Applied Sciences.

[81]  Alessandro Mattoni,et al.  Hydrophilicity and Water Contact Angle on Methylammonium Lead Iodide , 2018, Advanced Materials Interfaces.

[82]  C. Peng,et al.  First-Principles Insight into the Degradation Mechanism of CH3NH3PbI3 Perovskite: Light-Induced Defect Formation and Water Dissociation , 2018, The Journal of Physical Chemistry C.

[83]  Rongrong Cheacharoen,et al.  Encapsulating perovskite solar cells to withstand damp heat and thermal cycling , 2018 .

[84]  Suneth C. Watthage,et al.  Impact of Moisture on Photoexcited Charge Carrier Dynamics in Methylammonium Lead Halide Perovskites. , 2018, The journal of physical chemistry letters.

[85]  J. Brédas,et al.  Halogen Migration in Hybrid Perovskites: The Organic Cation Matters. , 2018, The journal of physical chemistry letters.

[86]  Peter Zapol,et al.  Vacancy-Mediated Anion Photosegregation Kinetics in Mixed Halide Hybrid Perovskites: Coupled Kinetic Monte Carlo and Optical Measurements , 2018, ACS Energy Letters.

[87]  Jinlan Wang,et al.  Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning , 2018, Nature Communications.

[88]  D. Beljonne,et al.  Tuning the Optoelectronic Properties of Two-Dimensional Hybrid Perovskite Semiconductors with Alkyl Chain Spacers. , 2018, The journal of physical chemistry letters.

[89]  Wei Li,et al.  Predicting the thermodynamic stability of perovskite oxides using machine learning models , 2018, Computational Materials Science.

[90]  Yue Zhang,et al.  Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[91]  M. Demir,et al.  CsPbBr 3 perovskites: Theoretical and experimental investigation on water-assisted transition from nanowire formation to degradation , 2018, 1803.00848.

[92]  L. Siyuan,et al.  Effect of Bromine Substitution on the Ion Migration and Optical Absorption in MAPbI3 Perovskite Solar Cells: The First-Principles Study , 2018 .

[93]  Christopher J. Bartel,et al.  New tolerance factor to predict the stability of perovskite oxides and halides , 2018, Science Advances.

[94]  Rongrong Cheacharoen,et al.  Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling , 2018 .

[95]  M. Bawendi,et al.  Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells , 2018, Energy & Environmental Science.

[96]  P. Kamat,et al.  Light-Induced Anion Phase Segregation in Mixed Halide Perovskites , 2018 .

[97]  W. Goddard,et al.  Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates , 2017 .

[98]  P. Lund,et al.  Impact of H2O on organic–inorganic hybrid perovskite solar cells , 2017 .

[99]  A. Walsh,et al.  Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells. , 2017, The journal of physical chemistry letters.

[100]  A. Walsh,et al.  Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites , 2017, 1708.07608.

[101]  Yicheng Zhao,et al.  Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells. , 2017, The journal of physical chemistry letters.

[102]  Alessandro Mattoni,et al.  Collective Molecular Mechanisms in the CH3NH3PbI3 Dissolution by Liquid Water. , 2017, ACS nano.

[103]  P. Kamat,et al.  Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites , 2017, Nature Communications.

[104]  T. Edvinsson,et al.  Vacancy dipole interactions and the correlation with monovalent cation dependent ion movement in lead halide perovskite solar cell materials , 2017 .

[105]  Yixin Zhao,et al.  Mixed cation hybrid lead halide perovskites with enhanced performance and stability , 2017 .

[106]  Rongrong Cheacharoen,et al.  Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability , 2017 .

[107]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[108]  Linghai Zhang,et al.  Ab initio study of the role of oxygen and excess electrons in the degradation of CH3NH3PbI3 , 2017 .

[109]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[110]  Shui-Tong Lee,et al.  Atomistic Origins of Surface Defects in CH3NH3PbBr3 Perovskite and Their Electronic Structures. , 2017, ACS nano.

[111]  Y. Qi,et al.  Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis , 2016 .

[112]  S. Meloni,et al.  Valence and conduction band tuning in halide perovskites for solar cell applications , 2016 .

[113]  R. Berger,et al.  Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells. , 2016, Physical chemistry chemical physics : PCCP.

[114]  H. Snaith,et al.  Light-induced annihilation of Frenkel defects in organo-lead halide perovskites , 2016 .

[115]  Yan Yao,et al.  Interaction of Organic Cation with Water Molecule in Perovskite MAPbI3: From Dynamic Orientational Disorder to Hydrogen Bonding , 2016 .

[116]  P. Bowen,et al.  Grain boundary complexion and transparent polycrystalline alumina from an atomistic simulation perspective , 2016 .

[117]  M. Kanatzidis,et al.  Dynamic Stereochemical Activity of the Sn(2+) Lone Pair in Perovskite CsSnBr3. , 2016, Journal of the American Chemical Society.

[118]  L. Colombo,et al.  Tuning the thermal conductivity of methylammonium lead halide by the molecular substructure. , 2016, Physical chemistry chemical physics : PCCP.

[119]  G. Kresse,et al.  Room-temperature dynamic correlation between methylammonium molecules in lead-iodine based perovskites: An ab initio molecular dynamics perspective , 2016, 1608.04991.

[120]  O. Prezhdo,et al.  Moderate Humidity Delays Electron-Hole Recombination in Hybrid Organic-Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments. , 2016, The journal of physical chemistry letters.

[121]  Rajan Jose,et al.  Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. , 2016, Physical chemistry chemical physics : PCCP.

[122]  Mingchao Wang,et al.  Anisotropic and Ultralow Phonon Thermal Transport in Organic–Inorganic Hybrid Perovskites: Atomistic Insights into Solar Cell Thermal Management and Thermoelectric Energy Conversion Efficiency , 2016 .

[123]  David T. Limmer,et al.  Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. , 2016, Nano letters.

[124]  P. Delugas,et al.  Thermally Activated Point Defect Diffusion in Methylammonium Lead Trihalide: Anisotropic and Ultrahigh Mobility of Iodine. , 2016, The journal of physical chemistry letters.

[125]  Corey Oses,et al.  High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites , 2016, 1606.03279.

[126]  M. Yanagida,et al.  Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics. , 2016, The journal of physical chemistry letters.

[127]  Peng Gao,et al.  Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8 , 2016 .

[128]  R. Palgrave,et al.  On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.

[129]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[130]  Aron Walsh,et al.  Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1–xBrx)3 Hybrid Halide Perovskite Alloy , 2016, The journal of physical chemistry letters.

[131]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[132]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[133]  Meicheng Li,et al.  Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface , 2016 .

[134]  P. Delugas,et al.  Temperature Evolution of Methylammonium Trihalide Vibrations at the Atomic Scale. , 2016, The journal of physical chemistry letters.

[135]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[136]  Ronggui Yang,et al.  Lattice Thermal Conductivity of Organic-Inorganic Hybrid Perovskite CH3NH3PbI3 , 2015, 1512.09224.

[137]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[138]  Linghai Zhang,et al.  Ab Initio Study of Interaction of Water, Hydroxyl Radicals, and Hydroxide Ions with CH3NH3PbI3 and CH3NH3PbBr3 Surfaces , 2015 .

[139]  Keitaro Sodeyama,et al.  First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. , 2015, Journal of the American Chemical Society.

[140]  Wei Geng,et al.  Uncovering the Veil of the Degradation in Perovskite CH3NH3PbI3 upon Humidity Exposure: A First-Principles Study , 2015 .

[141]  Diomedes Saldana-Greco,et al.  Polarization Dependence of Water Adsorption to CH3NH3PbI3 (001) Surfaces. , 2015, The journal of physical chemistry letters.

[142]  Dane W. deQuilettes,et al.  The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. , 2015, ACS nano.

[143]  P. Delugas,et al.  Methylammonium Rotational Dynamics in Lead Halide Perovskite by Classical Molecular Dynamics: The Role of Temperature , 2015 .

[144]  Jon M. Azpiroz,et al.  Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water , 2015 .

[145]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[146]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[147]  S. C. Parker,et al.  Toward Knowledge-Based Grain-Boundary Engineering of Transparent Alumina Combining Advanced TEM and Atomistic Modeling , 2015 .

[148]  M. Kemerink,et al.  Fundamental Tradeoff between Emission Intensity and Efficiency in Light‐Emitting Electrochemical Cells , 2015 .

[149]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[150]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[151]  Jürg Hutter,et al.  Thermal effects on CH3NH3PbI3 perovskite from Ab initio molecular dynamics simulations , 2015 .

[152]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[153]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[154]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[155]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[156]  Bobby G. Sumpter,et al.  Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3 , 2015 .

[157]  A. Walsh,et al.  Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites , 2014, Angewandte Chemie.

[158]  Alberto Torres,et al.  Surface Effects and Adsorption of Methoxy Anchors on Hybrid Lead Iodide Perovskites: Insights for Spiro-MeOTAD Attachment , 2014 .

[159]  M. Cantoni,et al.  Segregation of anion (Cl−) impurities at transparent polycrystalline α-alumina interfaces , 2014 .

[160]  Keitaro Sodeyama,et al.  Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[161]  P. Bowen,et al.  Atomistic Modeling of Effect of Mg on Oxygen Vacancy Diffusion in α-Alumina , 2014 .

[162]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[163]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[164]  P. Bowen,et al.  Atomistic modeling of the effect of codoping on the atomistic structure of interfaces in α-alumina , 2012 .

[165]  P. Bowen,et al.  Atomistic modeling of dopant segregation in α-alumina ceramics: Coverage dependent energy of segregation and nominal dopant solubility , 2011 .

[166]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[167]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[168]  Na Li,et al.  Structural stability and formability of ABO3-type perovskite compounds. , 2007, Acta crystallographica. Section B, Structural science.

[169]  J. L. Gómez-Amoza,et al.  Interfacial adsorption of polymers and surfactants: implications for the properties of disperse systems of pharmaceutical interest. , 1999, Drug development and industrial pharmacy.

[170]  A. Claire The analysis of grain boundary diffusion measurements , 1963 .

[171]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[172]  Shahzad Ahmad,et al.  Enhancing operational stability in perovskite solar cells by solvent-free encapsulation method , 2022, Sustainable Energy & Fuels.

[173]  J. Stein,et al.  The Degradation and Recovery Behavior of Mix-cations Perovskite Solar Cells in Moisture and Gas Mixture Environment , 2022, Journal of Materials Chemistry A.

[174]  Ashutosh Kumar Singh,et al.  Defect Formation and Healing at Grain Boundaries in Lead-Halide Perovskites , 2022, Journal of Materials Chemistry A.

[175]  C. Ballif,et al.  Lateral Ion Migration Accelerates Degradation in Halide Perovskite Devices , 2022, Energy & Environmental Science.

[176]  A. Filippetti,et al.  The dominant role of surfaces in the hysteretic behavior of hybrid perovskites , 2020 .

[177]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.