Adapting coincidence scalers and neural modelling studies of vision

SummarySome extensions of the theory of adapting coincidence scaling are presented in the context of neural theory and modelling.Previously the theory of adapting coincidence scaling has been successfully applied to quite a number of specific problems mainly drawn from psychophysical theories of vision: van de Grind et al. (1970a, b); Koenderink et al. (1970a, b). Here emphasis is on neurophysiological problems and after a brief discussion of the “coding” and “component” problems of neural network modelling and a survey of basic coincidence scaling mechanisms a paradigm for neural encoding is treated in some detail. This paradigm (Fig. 6A) is similar to the neuromimes developed and studied by Harmon (1959, 1961) and Küpfmüller and Jenik (1961) for deterministic input signals. On the basis of the introductory discussion of the coding problem it is assumed that the neural code in the peripheral part of the nervous system that we choose as our hunting ground, viz. the retina, is an average event rate code with a Poisson point process as a carrier. Thus the paradigm for neural encoding is studied for such a stochastic input point process. It is then among other things shown that such a simple encoder can generate a wide variety of multimodal interval distributions for certain choices of its parameters. Next we turn to a classic coincidence model of vision and give extremely accurate simulation results to substitute for the lacking analytic solution of the underlying K-fold coincidence problem.A shortcoming of this model is analysed in terms of elementary neural operations and it is shown that the problem of specifying a generalized version of the model ties in with the problem of developing models to explain the quantal signals (bumps) observed on the generator potential during intracellular recordings from the eccentric cell of Limulus. A cybernetic principle for “bump” size adaptation is formulated on the basis of the apparent and possibly significant similarity of this adaptation process with the event rate reduction principle embodied in the so called V R-machine (van de Grind et al., 1970a) which is one of our set of adapting coincidence scalers.

[1]  E J Bayly,et al.  Spectral analysis of pulse frequency modulation in the nervous systems. , 1968, IEEE transactions on bio-medical engineering.

[2]  F. Dodge,et al.  Voltage Noise in Limulus Visual Cells , 1968, Science.

[3]  C A Terzuolo,et al.  Transfer functions of the slowly adapting stretch receptor organ of Crustacea. , 1965, Cold Spring Harbor symposia on quantitative biology.

[4]  H. A. Reuver,et al.  On a waiting time problem in physiology , 1965 .

[5]  J. J. Koenderink,et al.  Foveal information processing at photopic luminances , 1971, Kybernetik.

[6]  J. J. Koenderink,et al.  The concepts of scaling and refractoriness in psychophysical theories of vision , 1971, Kybernetik.

[7]  M. ten Hoopen,et al.  An n-fold coincidence problem in physiology. , 1965, Journal of theoretical biology.

[8]  R. Stein Some models of neuronal variability. , 1967, Biophysical journal.

[9]  ON THE ORIGIN OF THE DARK DISCHARGE OF RETINAL GANGLION CELLS. , 1965, Archives italiennes de biologie.

[10]  小池 将貴,et al.  Computer Simulation Techniques:Thomas H. Naylor, Joseph L. Balintfy, Donald S. Burdick and Kong Chu 著,John Wiley & Sons, Inc., New York , 1968 .

[11]  Willem A. van Bergeijk,et al.  Nomenclature of Devices Which Simulate Biological Functions , 1960, Science.

[12]  G. Färber,et al.  Berechnung und Messung des Informationsflusses der Nervenfaser , 1968, Kybernetik.

[13]  M. A. Bouman,et al.  A model of a retinal sampling-unit based on fluctuation theory , 1968, Kybernetik.

[14]  R. Stein A THEORETICAL ANALYSIS OF NEURONAL VARIABILITY. , 1965, Biophysical journal.

[15]  M. Hoopen On a waiting time problem in physiology , 1965, Naturwissenschaften.

[16]  J. J. Koenderink,et al.  Models of the processing of quantum signals by the human peripheral retina , 1970, Kybernetik.

[17]  S. Rice Mathematical analysis of random noise , 1944 .

[18]  L Maffei,et al.  Retinal ganglion cell response to sinusoidal light stimulation. , 1966, Journal of neurophysiology.

[19]  Thomas Herbert Naylor Computer Simulation Techniques , 1966 .

[20]  M. Fuortes,et al.  Electric activity of cells in the eye of Limulus. , 1958, American journal of ophthalmology.

[21]  Lawrence Stark,et al.  Neurological Control Systems: Studies in Bioengineering , 1995 .

[22]  C. D. Geisler,et al.  A stochastic model of the repetitive activity of neurons. , 1966, Biophysical journal.

[23]  H. A. Reuver,et al.  Selective interaction of two independent recurrent processes , 1965, Journal of Applied Probability.

[24]  Hartline Hk,et al.  Fluctuation of response of single visual sense cells. , 1947 .

[25]  P.I.M. Johannesma,et al.  Stochastic neural activity: a theoretical investigation , 1969 .

[26]  M. ten Hoopen,et al.  Multimodal interval distributions , 2004, Kybernetik.

[27]  H. A. Reuver,et al.  The superposition of random sequences of events , 1966 .

[28]  Thomas F. Weiss,et al.  A model of the peripheral auditory system , 1966, Kybernetik.

[29]  D. H. Kelly Visual Responses to Time-Dependent Stimuli.* II. Single-Channel Model of the Photopic Visual System , 1961 .

[30]  C. Terzuolo,et al.  Diverse forms of activity in the somata of spontaneous and integrating ganglion cells , 1957, The Journal of physiology.

[31]  M. A. Bouman,et al.  A coincidence model of the processing of quantum signals by the human retina , 1968, Kybernetik.

[32]  F JENIK,et al.  Electronic neuron models as an aid to neurophysiological research. , 1962, Ergebnisse der Biologie.

[33]  H. V. Velden Over het aantal lichtquanta dat nodig is voor een lichtprikkel bij het menselijk oog , 1944 .

[34]  M A BOUMAN,et al.  The two-quanta explanation of the dependence of the threshold values and visual acuity on the visual angle and the time of observation. , 1947, Journal of the Optical Society of America.

[35]  E. Lewis Using electronic circuits to model simple neuroelectric interactions , 1968 .

[36]  M. Fuortes,et al.  Probability of Occurrence of Discrete Potential Waves in the Eye of Limulus , 1964, The Journal of general physiology.

[37]  K. Dietz Erzeugung multimodaler Intervallverteilungen durch Ausdünnung von Erneuerungsprozessen , 1968, Kybernetik.

[38]  Een wachtprobleem voorkomende bij drempelwaardemetingen aan het oog , 1961 .

[39]  M. Bouman My image of the retina , 1969, Quarterly Reviews of Biophysics.

[40]  G. P. Moore,et al.  Statistical analysis and functional interpretation of neuronal spike data. , 1966, Annual review of physiology.

[41]  M. Ten Hoopen Impulse sequences of thalamic neurons — An attempted theoretical interpretation , 1966 .

[42]  G. Poggio,et al.  TIME SERIES ANALYSIS OF IMPULSE SEQUENCES OF THALAMIC SOMATIC SENSORY NEURONS. , 1964, Journal of neurophysiology.

[43]  F. Jenik,et al.  Über die Nachrichtenverarbeitung in der Nervenzelle , 2004, Kybernetik.

[44]  D. R. Smith,et al.  Analysis of the exponential decay model of the neuron showing frequency threshold effects. , 1969, The Bulletin of mathematical biophysics.

[45]  J. J. Koenderink,et al.  Models of retinal signal processing at high luminances , 1970, Kybernetik.

[46]  M. Fuortes,et al.  Interpretation of the Repetitive Firing of Nerve Cells , 1962, The Journal of general physiology.

[47]  M. Fuortes Initiation of impulses in visual cells of Limulus , 1959, The Journal of physiology.

[48]  W. Levick,et al.  Statistical analysis of the dark discharge of lateral geniculate neurones , 1964, The Journal of physiology.

[49]  Leon D. Harmon,et al.  Studies with artificial neurons, I: properties and functions of an artificial neuron , 1961, Kybernetik.

[50]  R. Stein,et al.  The information capacity of nerve cells using a frequency code. , 1967, Biophysical journal.

[51]  A. Watanabe,et al.  The interaction of electrical activity among neurons of lobster cardiac ganglion. , 1958, The Japanese journal of physiology.

[52]  R. B. Pinter,et al.  Pulse modulation in physiological systems, phenomenological aspects. , 1961, IRE transactions on bio-medical electronics.

[53]  R. Shapley,et al.  Linear systems analysis of the Limulus retina. , 1970, Behavioral science.

[54]  Lawrence A. Stark,et al.  Neurological Control Systems: Studies in Bioengineering , 1995 .

[55]  Some interrelations among physics, physiology, and psychology in the study of vision. , 1962 .

[56]  L. D. Harmon Neuromimes: Action of a Reciprocally Inhibitory Pair , 1964, Science.

[57]  A. Adolph Spontaneous Slow Potential Fluctuations in the Limulus Photoreceptor , 1964, The Journal of general physiology.

[58]  B. Burns,et al.  Physiological excitation of visual cortex in cat's unanesthetized isolated forebrain. , 1962, Journal of neurophysiology.

[59]  F. F. Hiltz Artificial neuron , 1963, Kybernetik.

[60]  M. ten Hoopen,et al.  Interaction between Two Independent Recurrent Time Series , 1967, Inf. Control..

[61]  R W JONES,et al.  A RECEPTOR ANALOG HAVING LOGARITHMIC RESPONSE. , 1963, IEEE transactions on bio-medical engineering.

[62]  M. ten Hoopen,et al.  Pooling of impulse sequences, with emphasis on applications to neuronal spike data , 1967, Kybernetik.