Global task-space adaptive control of robot

Task-space feedback information such as visual feedback is used in many modern robot control systems as it improves robustness to model uncertainty. However, existing task-space feedback control schemes are only valid locally in a finite task space within a limited sensing zone where the singularity of the Jacobian matrix can be avoided. The global stability problem of a task-space control system has not been systemically solved. In this paper, we introduce a novel regional feedback method for robot task-space control. Each feedback information is employed in a local region, and the combination of regional information ensures the global convergence of robot motion. The transition from one feedback information to another is embedded in the controllers without using any hard or discontinuous switching. Using the regional feedback, a new task-space control method is proposed, which consists of a reaching task variable that drives the robot from one task space to another and a desired task variable to move the robot to the desired position at the ending stage. We shall show that the proposed regional feedback control method is a united formulation to address various open issues in task-space control problems such as singularity problem and limited sensing zone. This is the first result in task-space control that the global dynamic stability can be guaranteed with the consideration of singularity issues and limited sensing zones.

[1]  Xiang Li,et al.  Reach then see: A new adaptive controller for robot manipulator based on dual task-space information , 2010, 2010 IEEE International Conference on Robotics and Automation.

[2]  Xiang Li,et al.  Singularity-robust task-space tracking control of robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[3]  Lee E. Weiss,et al.  Dynamic sensor-based control of robots with visual feedback , 1987, IEEE Journal on Robotics and Automation.

[4]  Hanlei Wang,et al.  Passivity based adaptive Jacobian tracking for free-floating space manipulators without using spacecraft acceleration , 2009, Autom..

[5]  Guoqiang Hu,et al.  Keeping Multiple Moving Targets in the Field of View of a Mobile Camera , 2011, IEEE Transactions on Robotics.

[6]  Masaru Uchiyama,et al.  Singularity-Consistent Parameterization of Robot Motion and Control , 2000, Int. J. Robotics Res..

[7]  Bruno Siciliano,et al.  A solution algorithm to the inverse kinematic problem for redundant manipulators , 1988, IEEE J. Robotics Autom..

[8]  Warren E. Dixon,et al.  Tracking Control for Robot Manipulators with Kinematic and Dynamic Uncertainty , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[9]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[10]  Ryuta Ozawa,et al.  Adaptive task space PD control via implicit use of visual information , 2009 .

[11]  Graziano Chesi,et al.  Visual Servoing via Advanced Numerical Methods , 2010 .

[12]  Chien Chern Cheah,et al.  Task-space PD Control of Robot Manipulators: Unified Analysis and Duality Property , 2008, Int. J. Robotics Res..

[13]  Suguru Arimoto,et al.  Approximate Jacobian control for robots with uncertain kinematics and dynamics , 2003, IEEE Trans. Robotics Autom..

[14]  Chien Chern Cheah,et al.  Multiple task-space robot control: Sense locally, act globally , 2012, 2012 IEEE International Conference on Robotics and Automation.

[15]  François Chaumette,et al.  Path planning for robust image-based control , 2002, IEEE Trans. Robotics Autom..

[16]  Ezio Malis Visual servoing invariant to changes in camera-intrinsic parameters , 2004, IEEE Trans. Robotics Autom..

[17]  Daniel E. Koditschek,et al.  Visual servoing via navigation functions , 2002, IEEE Trans. Robotics Autom..

[18]  Stefano Chiaverini,et al.  Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators , 1997, IEEE Trans. Robotics Autom..

[19]  Bradley J. Nelson,et al.  Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies , 2000 .

[20]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[21]  Yunhui Liu,et al.  Uncalibrated visual servoing of robots using a depth-independent interaction matrix , 2006, IEEE Transactions on Robotics.

[22]  Warren E. Dixon,et al.  Adaptive Regulation of Amplitude Limited Robot Manipulators With Uncertain Kinematics and Dynamics , 2007, IEEE Transactions on Automatic Control.

[23]  Nicholas R. Gans,et al.  Stable Visual Servoing Through Hybrid Switched-System Control , 2007, IEEE Transactions on Robotics.

[24]  B. Siciliano,et al.  Second-order kinematic control of robot manipulators with Jacobian damped least-squares inverse: theory and experiments , 1997 .

[25]  Chien Chern Cheah,et al.  Adaptive Tracking Control for Robots with Unknown Kinematic and Dynamic Properties , 2006, Int. J. Robotics Res..

[26]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[27]  Suguru Arimoto Control Theory of Nonlinear Mechanical Systems , 1996 .

[28]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[29]  Suguru Arimoto,et al.  A New Feedback Method for Dynamic Control of Manipulators , 1981 .

[30]  Nicolás García Aracil,et al.  Continuous visual servoing despite the changes of visibility in image features , 2005, IEEE Transactions on Robotics.

[31]  Chien Chern Cheah,et al.  Adaptive Jacobian vision based control for robots with uncertain depth information , 2010, Autom..

[32]  Rafael Kelly,et al.  Regulation of manipulators in generic task space: an energy shaping plus damping injection approach , 1999, IEEE Trans. Robotics Autom..