Artificial cognition for autonomous planar vehicles: modelling collision avoidance and collective manoeuvre

A hierarchical cognitive robotics model for a team of unattended robotic ground vehicles (UGVs) is proposed. The first level rigorously defines conflict resolution for a couple of UGVs, using dynamical games on SE(2)-groups of plane motion. The second level extends it to n UGVs, using Nash-equilibrium approach. The third provides adaptive guidance for several groups of UGVs. The fourth, collective manoeuvre level, proposes a combination of an attractor neural model and a fuzzy-neural 'supervisor', to perform an adaptive path definition and waypoints selection, as well as chaos control. The fifth, cognitive level, performs overall mission planning/feedback control.

[1]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[2]  Rodney A. Brooks,et al.  Elephants don't play chess , 1990, Robotics Auton. Syst..

[3]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[4]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[5]  Vijay R. Kumar,et al.  Optimal Motion Generation for Groups of Robots: A Geometric Approach , 2004 .

[6]  Jerrold E. Marsden,et al.  Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .

[7]  John Lygeros,et al.  Verified hybrid controllers for automated vehicles , 1998, IEEE Trans. Autom. Control..

[8]  Ronald C. Arkin,et al.  Behavior-Based Robot Navigation for Extended Domains , 1992, Adapt. Behav..

[9]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[10]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[11]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[12]  Gregor Schöner,et al.  A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion , 1992, Robotics Auton. Syst..

[13]  Tong Heng Lee,et al.  Output tracking control of MIMO fuzzy nonlinear systems using variable structure control approach , 2002, IEEE Trans. Fuzzy Syst..

[14]  Mohan M. Trivedi,et al.  A neuro-fuzzy controller for mobile robot navigation and multirobot convoying , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[15]  T. Ivancevic,et al.  Applied differential geometry : a modern introduction , 2007 .

[16]  Vijay Kumar,et al.  A Framework and Architecture for Multirobot Coordination , 2000, International Symposium on Experimental Robotics.

[17]  David Levy,et al.  Book review: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence by Bart Kosko (Prentice Hall 1992) , 1992, CARN.

[18]  G. Schöner The Cambridge Handbook of Computational Psychology: Dynamical Systems Approaches to Cognition , 2008 .

[19]  Vijay Kumar,et al.  A Framework and Architecture for Multi-Robot Coordination , 2000, ISER.

[20]  Bart Kosko,et al.  Neural networks and fuzzy systems , 1998 .

[21]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[22]  Calin Belta,et al.  Abstraction and control for Groups of robots , 2004, IEEE Transactions on Robotics.

[23]  Vijay Kumar,et al.  Hierarchical modeling and analysis of embedded systems , 2003, Proc. IEEE.

[24]  A. Isidori Nonlinear Control Systems , 1985 .

[25]  Marc Schoenauer,et al.  Evolution of Voronoi based fuzzy recurrent controllers , 2005, GECCO '05.

[26]  Gregor Schöner,et al.  Dynamics of behavior: Theory and applications for autonomous robot architectures , 1995, Robotics Auton. Syst..

[27]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[28]  Vladimir G. Ivancevic,et al.  High-Dimensional Chaotic and Attractor Systems , 2007 .

[29]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[30]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[31]  Walter J. Freeman,et al.  A field-theoretic approach to understanding scale-free neocortical dynamics , 2005, Biological Cybernetics.

[32]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[33]  Elias N. Houstis,et al.  Neurofuzzy Motion Planners for Intelligent Robots , 1997, J. Intell. Robotic Syst..

[34]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[35]  Vladimir G Ivancevic,et al.  Neuro-Fuzzy Associative Machinery for Comprehensive Brain and Cognition Modelling (Studies in Computational Intelligence) , 2007 .

[36]  N. A. Bernstein Dexterity and Its Development , 1996 .

[37]  T. Ivancevic,et al.  Geometrical Dynamics of Complex Systems , 2006 .

[38]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[39]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[40]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[41]  T. Başar,et al.  Dynamic Noncooperative Game Theory, 2nd Edition , 1998 .

[42]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[43]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[44]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[45]  G. Schöner,et al.  pre-print CONTEXT-SENSITIVE GENERATION OF GOAL-DIRECTED BEHAVIORAL SEQUENCES BASED ON NEURAL ATTRACTOR DYNAMICS , 2006 .