The Ising Partition Function: Zeros and Deterministic Approximation

We study the problem of approximating the partition function of the ferromagnetic Ising model in graphs and hypergraphs. Our first result is a deterministic approximation scheme (an FPTAS) for the partition function in bounded degree graphs that is valid over the entire range of parameters β (the interaction) and λ (the external field), except for the case |λ|=1 (the zero-field case). A randomized algorithm (FPRAS) for all graphs, and all β,λ has long been known. Unlike most other deterministic approximation algorithms for problems in statistical physics and counting, our algorithm does not rely on the decay of correlations property. Rather, we exploit and extend machinery developed recently by Barvinok, and Patel and Regts, based on the location of the complex zeros of the partition function, which can be seen as an algorithmic realization of the classical Lee-Yang approach to phase transitions. Our approach extends to the more general setting of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even randomized) were known for a wide range of parameters. In order to achieve this extension, we establish a tight version of the Lee-Yang theorem for the Ising model on hypergraphs, improving a classical result of Suzuki and Fisher.

[1]  Allan Sly,et al.  Critical Ising on the Square Lattice Mixes in Polynomial Time , 2010, 1001.1613.

[2]  Michael E. Fisher,et al.  Zeros of the Partition Function for the Heisenberg, Ferroelectric, and General Ising Models , 1971 .

[3]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[4]  Dana Randall,et al.  Sampling spin configurations of an Ising system , 1999, SODA '99.

[5]  Allan Sly,et al.  Counting in two-spin models on d-regular graphs , 2014 .

[6]  Julius Borcea,et al.  The Lee‐Yang and Pólya‐Schur programs. II. Theory of stable polynomials and applications , 2008, 0809.3087.

[7]  Piyush Srivastava,et al.  Lee–Yang Theorems and the Complexity of Computing Averages , 2012, STOC '13.

[8]  Nima Anari,et al.  The Kadison-Singer Problem for Strongly Rayleigh Measures and Applications to Asymmetric TSP , 2014, ArXiv.

[9]  Alexander I. Barvinok,et al.  Computing the partition function for graph homomorphisms , 2014, Comb..

[10]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[11]  Péter Csikvári,et al.  Benjamini-Schramm continuity of root moments of graph polynomials , 2012, Eur. J. Comb..

[12]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[13]  Liang Li,et al.  Correlation Decay up to Uniqueness in Spin Systems , 2013, SODA.

[14]  F. Martinelli,et al.  Approach to equilibrium of Glauber dynamics in the one phase region , 1994 .

[15]  T. Liggett,et al.  Negative dependence and the geometry of polynomials , 2007, 0707.2340.

[16]  Alexander I. Barvinok,et al.  Computing the partition function for graph homomorphisms with multiplicities , 2016, J. Comb. Theory, Ser. A.

[17]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[18]  Alexander I. Barvinok,et al.  Computing the Permanent of (Some) Complex Matrices , 2014, Foundations of Computational Mathematics.

[19]  A. Scott,et al.  The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.

[20]  J. Barata,et al.  On the Distribution and Gap Structure of Lee–Yang Zeros for the Ising Model: Periodic and Aperiodic Couplings , 2001 .

[21]  F. Martinelliz,et al.  Approach to Equilibrium of Glauber Dynamics in the One Phase Region. Ii: the General Case , 1994 .

[22]  Taro Asano,et al.  Lee-Yang Theorem and the Griffiths Inequality for the Anisotropic Heisenberg Ferromagnet , 1970 .

[23]  László Lovász,et al.  Left and right convergence of graphs with bounded degree , 2010, Random Struct. Algorithms.

[24]  Piyush Srivastava,et al.  Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs , 2011, Journal of Statistical Physics.

[25]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[26]  M. Jerrum,et al.  Random cluster dynamics for the Ising model is rapidly mixing , 2016, SODA.

[27]  Viresh Patel,et al.  Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials , 2016, Electron. Notes Discret. Math..

[28]  Leslie Ann Goldberg,et al.  A Complexity Dichotomy for Partition Functions with Mixed Signs , 2008, SIAM J. Comput..

[29]  . C. A. Barata,et al.  Gri ths ' Singularities in Diluted Ising Models on the CayleyTreeJ , 1997 .

[30]  Thomas P. Hayes,et al.  Convergence of MCMC and Loopy BP in the Tree Uniqueness Region for the Hard-Core Model , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[31]  Heng Guo,et al.  Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems , 2016, APPROX-RANDOM.

[32]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[33]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[34]  David Ruelle,et al.  Characterization of Lee-Yang polynomials , 2008, 0811.1327.

[35]  Fengshan Bai,et al.  Approximating partition functions of the two-state spin system , 2011, Inf. Process. Lett..

[36]  James B. Shearer,et al.  On a problem of spencer , 1985, Comb..

[37]  Leslie Ann Goldberg,et al.  The computational complexity of two‐state spin systems , 2003, Random Struct. Algorithms.

[38]  Eric Vigoda,et al.  Improved inapproximability results for counting independent sets in the hard-core model , 2014, Random Struct. Algorithms.

[39]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[40]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[41]  Yuval Peres,et al.  Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[42]  Pinyan Lu,et al.  FPTAS for Hardcore and Ising Models on Hypergraphs , 2016, STACS.

[43]  D. Marchetti,et al.  Griffiths' singularities in diluted ising models on the Cayley tree , 1997 .

[44]  Leslie Ann Goldberg,et al.  The complexity of approximately counting in 2-spin systems on k-uniform bounded-degree hypergraphs , 2015, Inf. Comput..

[45]  Elchanan Mossel,et al.  Exact thresholds for Ising–Gibbs samplers on general graphs , 2009, The Annals of Probability.

[46]  Nima Anari,et al.  A generalization of permanent inequalities and applications in counting and optimization , 2017, STOC.

[47]  Piyush Srivastava,et al.  The Ising Partition Function: Zeros and Deterministic Approximation , 2017 .

[48]  Jin-Yi Cai,et al.  Graph Homomorphisms with Complex Values: A Dichotomy Theorem , 2009, SIAM J. Comput..

[49]  Piyush Srivastava,et al.  Spatial mixing and the connective constant: optimal bounds , 2014, SODA.

[50]  Asaf Nachmias,et al.  A power law of order 1/4 for critical mean-field Swendsen-Wang dynamics , 2011 .

[51]  Yitong Yin,et al.  Counting Hypergraph Matchings up to Uniqueness Threshold , 2016, APPROX-RANDOM.

[52]  A. Sinclair,et al.  Glauber Dynamics on Trees: Boundary Conditions and Mixing Time , 2003, math/0307336.

[53]  F. Martinelli,et al.  Approach to equilibrium of Glauber dynamics in the one phase region , 1994 .

[54]  J. Borcea,et al.  The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability , 2008, 0809.0401.

[55]  A. Sinclair,et al.  Spatial mixing and the connective constant: optimal bounds , 2015, SODA 2015.

[56]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[57]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[58]  Alexander I. Barvinok,et al.  Computing the Partition Function for Cliques in a Graph , 2014, Theory Comput..