Core-triple shells pH-responsive zinc-ferrite nanocomposite: Efficient dual remedy for targeted lung cancer therapy

[1]  Marjan Ghorbani,et al.  pH-responsive, magnetic-luminescent core/shell carriers for co-delivery of anticancer drugs (MTX & DOX) for breast cancer treatment , 2023, Journal of Alloys and Compounds.

[2]  A. Khandar,et al.  Synthesis of ZnFe2O4@SiO2 nanoparticles as a pH-sensitive drug release system and good nano carrier for CT-DNA binding , 2021 .

[3]  A. Guha,et al.  Magnetically separable ZnFe2O4 nanoparticles: A low cost and sustainable catalyst for propargyl amine and NH-triazole synthesis , 2021, Applied Catalysis A: General.

[4]  D. Mooney,et al.  Obstacles and opportunities in a forward vision for cancer nanomedicine , 2021, Nature Materials.

[5]  M. Rahimi‐Nasrabadi,et al.  The ZnFe2O4@mZnO–N/RGO nano-composite as a carrier and an intelligent releaser drug with dual pH- and ultrasound-triggered control , 2021 .

[6]  Juan Wang,et al.  Three-dimensional graphene encapsulated Ag–ZnFe2O4 flower-like nanocomposites with enhanced photocatalytic degradation of enrofloxacin , 2021, RSC advances.

[7]  Qinfang Zhang,et al.  Facile fabrication of CeF3/g-C3N4 heterojunction photocatalysts with upconversion properties for enhanced photocatalytic desulfurization performance , 2020 .

[8]  G. Owens,et al.  Modified green synthesis of Fe3O4@SiO2 nanoparticles for pH responsive drug release. , 2020, Materials science & engineering. C, Materials for biological applications.

[9]  Kinam Park,et al.  Advanced drug delivery 2020 and beyond: Perspectives on the future. , 2020, Advanced drug delivery reviews.

[10]  M. Salavati‐Niasari,et al.  Mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. , 2020, Journal of hazardous materials.

[11]  Leila Roshangar,et al.  Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering , 2020 .

[12]  Dhanya Sunil,et al.  Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[13]  R. Zhuo,et al.  Efficient Co-delivery of Doxorubicin and Methotrexate by pH-Sensitive Dual-Functional Nanomicelles for Enhanced Synergistic Antitumor Efficacy. , 2019, ACS applied bio materials.

[14]  C. Marmion,et al.  Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? , 2019, Chemical reviews.

[15]  Marjan Ghorbani,et al.  A novel multi stimuli-responsive PEGylated hybrid gold/nanogels for co-delivery of doxorubicin and 6‑mercaptopurine. , 2018, Materials science & engineering. C, Materials for biological applications.

[16]  D. Qiu,et al.  A fibrous morphology silica-CoFe2O4 nanocarrier for anti-cancer drug delivery , 2018 .

[17]  Somiraa S. Said,et al.  Preparation and Characterization of Glycol Chitosan-Fe3O4 Core–Shell Magnetic Nanoparticles for Controlled Delivery of Progesterone , 2017 .

[18]  P. Kantoff,et al.  Cancer nanomedicine: progress, challenges and opportunities , 2016, Nature Reviews Cancer.

[19]  S. Lis,et al.  Synthesis, surface modification/decoration of luminescent-magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe3O4/SiO2/NH2/PAA/LnF3) , 2016 .

[20]  Yufang Zhu,et al.  Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia , 2016, Science and technology of advanced materials.

[21]  Marjan Ghorbani,et al.  Preparation of thermo and pH-responsive polymer@Au/Fe3O4 core/shell nanoparticles as a carrier for delivery of anticancer agent , 2015, Journal of Nanoparticle Research.

[22]  Jingyun Wang,et al.  Novel reduction-sensitive pullulan-based micelles with good hemocompatibility for efficient intracellular doxorubicin delivery , 2014 .

[23]  T. Grzyb,et al.  Facile synthesis, structural and spectroscopic properties of GdF3:Ce3+, Ln3+ (Ln3+=Sm3+, Eu3+, Tb3+, Dy3+) nanocrystals with bright multicolor luminescence , 2014 .

[24]  T. Grzyb,et al.  Synthesis and organic surface modification of luminescent, lanthanide-doped core/shell nanomaterials (LnF3@SiO2@NH2@organic acid) for potential bioapplications: spectroscopic, structural, and in vitro cytotoxicity evaluation. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[25]  Xing-Jie Liang,et al.  pH-sensitive nano-systems for drug delivery in cancer therapy. , 2014, Biotechnology advances.

[26]  C. Mao,et al.  A biocleavable pullulan-based vector via ATRP for liver cell-targeting gene delivery. , 2014, Biomaterials.

[27]  M. Giersig,et al.  Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals , 2013, Journal of Nanoparticle Research.

[28]  Yiqian Wang,et al.  Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[29]  T. Grzyb,et al.  Influence of Matrix on the Luminescent and Structural Properties of Glycerine-Capped, Tb3+-Doped Fluoride Nanocrystals , 2012 .

[30]  Z. Yin,et al.  Magnetite nanoparticles as smart carriers to manipulate the cytotoxicity of anticancer drugs: magnetic control and pH-responsive release , 2012 .

[31]  Chong Peng,et al.  Room temperature synthesis of hydrophilic Ln(3+)-doped KGdF4 (Ln = Ce, Eu, Tb, Dy) nanoparticles with controllable size: energy transfer, size-dependent and color-tunable luminescence properties. , 2012, Nanoscale.

[32]  B. Choi,et al.  Synthesis, phase composition modification, and optical properties of Ce3+/Tb3+ activated KGdF4 and GdF3 submicrocrystals , 2012 .

[33]  Meng Wang,et al.  Upconversion nanoparticles: synthesis, surface modification and biological applications. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[34]  Yimin Zhu,et al.  Multicolor upconverted luminescence-encoded superparticles via controlling self-assembly based on hydrophobic lanthanide-doped NaYF4 nanocrystals , 2011 .

[35]  Jun Lin,et al.  Size and shape controllable synthesis and luminescent properties of BaGdF5:Ce3+/Ln3+ (Ln = Sm, Dy, Eu, Tb) nano/submicrocrystals by a facile hydrothermal process. , 2011, Nanoscale.

[36]  Yu Chen,et al.  Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. , 2010, ACS nano.

[37]  Xueyuan Chen,et al.  Upconversion nanoparticles in biological labeling, imaging, and therapy. , 2010, The Analyst.

[38]  Shaobing Zhou,et al.  A biocompatible approach to surface modification: Biodegradable polymer functionalized super-paramagnetic iron oxide nanoparticles , 2010 .

[39]  Jun Lin,et al.  Synthesis of Magnetic, Up‐Conversion Luminescent, and Mesoporous Core–Shell‐Structured Nanocomposites as Drug Carriers , 2010 .

[40]  F. Zhang,et al.  Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[41]  G. Boulon Fifty years of advances in solid-state laser materials , 2010 .

[42]  Xin Wang,et al.  A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. , 2009, Talanta.

[43]  Lin Lin,et al.  A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres , 2009 .

[44]  Asako Narita,et al.  Facile control of silica shell layer thickness on hydrophilic iron oxide nanoparticles via reverse micelle method , 2009 .

[45]  Zhigang Chen,et al.  Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. , 2009, Analytical chemistry.

[46]  Louis A. Cuccia,et al.  Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles , 2009 .

[47]  A. Gaharwar,et al.  Dual-stimuli responsive PNiPAM microgel achieved via layer-by-layer assembly: magnetic and thermoresponsive. , 2008, Journal of colloid and interface science.

[48]  Yuanyuan Luo,et al.  Bifunctional Magnetic−Luminescent Nanocomposites: Y2O3/Tb Nanorods on the Surface of Iron Oxide/Silica Core−Shell Nanostructures , 2008 .

[49]  A. Wattiaux,et al.  Sonochemical approach to the synthesis of Fe(3)O(4)@SiO(2) core-shell nanoparticles with tunable properties. , 2008, ACS nano.

[50]  S. Nie,et al.  Therapeutic Nanoparticles for Drug Delivery in Cancer , 2008, Clinical Cancer Research.

[51]  Feng Wang,et al.  Multicolour PEI/NaGdF4:Ce3+,Ln3+ nanocrystals by single-wavelength excitation , 2007 .

[52]  U. Häfeli,et al.  Magnetic Nanoparticles as Drug Carriers , 2006 .

[53]  Feng Wang,et al.  One-pot synthesis of chitosan/LaF3:Eu3+ nanocrystals for bio-applications , 2006, Nanotechnology.

[54]  F. V. van Veggel,et al.  Bioconjugation of Ln3+-doped LaF3 nanoparticles to avidin. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[55]  R. Weissleder,et al.  Cell-specific targeting of nanoparticles by multivalent attachment of small molecules , 2005, Nature Biotechnology.

[56]  V. Sudarsan,et al.  Surface Eu3+ ions are different than “bulk” Eu3+ ions in crystalline doped LaF3 nanoparticles , 2005 .

[57]  O. Tillement,et al.  Nanosized hybrid particles with double luminescence for biological labeling , 2005 .

[58]  Younan Xia,et al.  Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals , 2004 .

[59]  Sang Won Lee,et al.  Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles , 2004 .

[60]  Zeev Rosenzweig,et al.  Superparamagnetic Fe2O3 Beads−CdSe/ZnS Quantum Dots Core−Shell Nanocomposite Particles for Cell Separation , 2004 .

[61]  Taekjip Ha,et al.  Near-complete suppression of quantum dot blinking in ambient conditions. , 2004, Journal of the American Chemical Society.

[62]  T. Möller,et al.  Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. , 2003, Angewandte Chemie.

[63]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[64]  M Dahan,et al.  Statistical aging and nonergodicity in the fluorescence of single nanocrystals. , 2002, Physical review letters.

[65]  Earl J. Bergey,et al.  Nanochemistry: Synthesis and Characterization of Multifunctional Nanoclinics for Biological Applications , 2002 .

[66]  Ralph Weissleder,et al.  DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. , 2002, Journal of the American Chemical Society.

[67]  Younan Xia,et al.  Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach , 2002 .

[68]  R. Vallée,et al.  Photoinduced absorption in thulium-doped ZBLAN fibers. , 1995, Optics letters.

[69]  G. Mogoșanu,et al.  pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy. , 2016, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie.

[70]  H. Warren Moos,et al.  Spectroscopic relaxation processes of rare earth ions in crystals , 1970 .