Lateral habenula glutamatergic neurons projecting to the dorsal raphe nucleus promote aggressive arousal in mice

[1]  S. Ogawa,et al.  Neuromodulatory effect of interleukin 1β in the dorsal raphe nucleus on individual differences in aggression , 2021, Molecular Psychiatry.

[2]  Zheng Li,et al.  The Dorsal Raphe Regulates the Duration of Attack through the Medial Orbitofrontal Cortex and Medial Amygdala , 2020, eNeuro.

[3]  Alexxai V. Kravitz,et al.  Potentiation of Divergent Medial Amygdala Pathways Drives Experience-Dependent Aggression Escalation , 2020, The Journal of Neuroscience.

[4]  J. Neumaier,et al.  Stress induces divergent gene expression among lateral habenula efferent pathways , 2020, Neurobiology of Stress.

[5]  A. Yamanaka,et al.  Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice , 2020, Nature Neuroscience.

[6]  S. Lammel,et al.  Chronic Stress Induces Activity, Synaptic, and Transcriptional Remodeling of the Lateral Habenula Associated with Deficits in Motivated Behaviors , 2019, Neuron.

[7]  Rita Z. Goldstein,et al.  Habenula-prefrontal resting-state connectivity in reactive aggressive men – A pilot study , 2019, Neuropharmacology.

[8]  Y. Shaham,et al.  Animal Models of (or for) Aggression Reward, Addiction, and Relapse: Behavior and Circuits , 2019, The Journal of Neuroscience.

[9]  T. Ishii,et al.  Glutamatergic Signals in the Dorsal Raphe Nucleus Regulate Maternal Aggression and Care in an Opposing Manner in Mice , 2019, Neuroscience.

[10]  B. Sperlágh,et al.  Differential Roles of the Two Raphe Nuclei in Amiable Social Behavior and Aggression – An Optogenetic Study , 2018, Front. Behav. Neurosci..

[11]  Fan Wang,et al.  Parallel Inhibitory and Excitatory Trigemino-Facial Feedback Circuitry for Reflexive Vibrissa Movement , 2017, Neuron.

[12]  Brian Zingg,et al.  AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors , 2017, Neuron.

[13]  Yan-Gang Sun,et al.  Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus. , 2017, Cell reports.

[14]  Brian D. Krawitz,et al.  Basal forebrain projections to the lateral habenula modulate aggression reward , 2016, Nature.

[15]  S. Higashijima,et al.  Social conflict resolution regulated by two dorsal habenular subregions in zebrafish , 2016, Science.

[16]  O. Yizhar,et al.  Biophysical constraints of optogenetic inhibition at presynaptic terminals , 2016, Nature Neuroscience.

[17]  Ray X. Lee,et al.  Glutamate Input in the Dorsal Raphe Nucleus As a Determinant of Escalated Aggression in Male Mice , 2015, The Journal of Neuroscience.

[18]  Shiliang Zhang,et al.  A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons , 2014, Nature Communications.

[19]  A. Bonci,et al.  Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. , 2014, Cell reports.

[20]  Christophe D. Proulx,et al.  Reward processing by the lateral habenula in normal and depressive behaviors , 2014, Nature Neuroscience.

[21]  Naoshige Uchida,et al.  Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. , 2014, Cell reports.

[22]  G. Silberberg,et al.  A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei , 2014, Neuron.

[23]  Liqun Luo,et al.  Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons , 2014, Neuron.

[24]  J. Mann,et al.  Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice , 2014, Molecular Psychiatry.

[25]  A. Takahashi,et al.  Neurogenetics of aggressive behavior: studies in rodents. , 2014, Current topics in behavioral neurosciences.

[26]  M. Potegal Aggressive Arousal: The Amygdala Connection , 2013 .

[27]  J. Archer,et al.  Game Theory Models and Escalation of Animal Fights , 2013 .

[28]  Kenji F. Tanaka,et al.  Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice , 2013, Behavioural Brain Research.

[29]  K. Miczek,et al.  Excessive aggression as model of violence: a critical evaluation of current preclinical methods , 2013, Psychopharmacology.

[30]  Kenji F. Tanaka,et al.  Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. , 2012, Cell reports.

[31]  J. Betley,et al.  Deconstruction of a neural circuit for hunger , 2012, Nature.

[32]  C. Lowry,et al.  Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits , 2011, Psychopharmacology.

[33]  A. Takahashi,et al.  GABAB Receptor Modulation of Serotonin Neurons in the Dorsal Raphé Nucleus and Escalation of Aggression in Mice , 2010, The Journal of Neuroscience.

[34]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[35]  Stefano Parmigiani,et al.  Escalated aggressive behavior: dopamine, serotonin and GABA. , 2005, European journal of pharmacology.

[36]  S. D. de Boer,et al.  5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. , 2005, European journal of pharmacology.

[37]  B. Olivier Serotonin and Aggression , 2004, Annals of the New York Academy of Sciences.

[38]  K. Miczek,et al.  Escalated Aggressive Behavior: New Pharmacotherapeutic Approaches and Opportunities , 2004, Annals of the New York Academy of Sciences.

[39]  J. O'Donnell,et al.  Intruder-evoked aggression in isolated and nonisolated mice: Effects of psychomotor stimulants and l-Dopa , 1978, Psychopharmacology.

[40]  W. Heiligenberg The effect of external stimuli on the attack readiness of a cichlid fish , 1965, Zeitschrift für vergleichende Physiologie.

[41]  K. Miczek,et al.  Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253 , 1999, Psychopharmacology.

[42]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[43]  E. Coccaro,et al.  The serotonin hypothesis of aggression revisited. , 1997, Clinical psychology review.

[44]  I. Lucki,et al.  Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. , 1994, The Journal of pharmacology and experimental therapeutics.

[45]  M. Potegal,et al.  Time course of aggressive arousal in female hamsters and male rats. , 1992, Behavioral and neural biology.

[46]  V. Denenberg,et al.  The development of standard stimulus animals for mouse (Mus musculus) aggression testing by means of olfactory bulbectomy. , 1973, Animal behaviour.

[47]  K. Lagerspetz,et al.  The effect of prior aggressive or sexual arousal on subsequent aggressive or sexual reactions in male mice. , 1967, Scandinavian journal of psychology.

[48]  E. C. Grant,et al.  A comparison of the social postures of some common laboratory rodents. , 1963 .