Chromian spinels and magnetite of serpentinites, steatitic rocks, tremolite asbestos and chloritites from Bragança massif, northeastern Portugal

At Braganca region, northeastern Portugal, accessory chromian spinels and magnetite occur in serpentinites and steatitic rocks and rarely in tremolite asbestos and chloritites. The chromian spinels h ave a large range in composition, which is related to serpentinization and other subsequent alteration processes such as steatization. Four varieties of zoned chromian spinels were distinguished: 1- zoned crystals with a Cr-rich hercynite core and a ferrian chromite rim in serpentinite from Donai; 2- zoned crystals with an aluminian chromite core and a ferrian chromite rim in steatitic rock from D onai; 3- zoned aluminian chromite crystals showing a rim richer in Fe 2+ and poorer in Mg than the core, found in Donai tremolite asbestos; 4- zoned chromian magnetite crystals showing a rim richer in Fe 3+ and poorer in Cr than the core, in serpentinites and steatitic rocks from Sete Fontes and Soeira/Pena Maquieira. Unzoned aluminian chromite crystals were found in Donai chloritite. Magnetite from the Donai serpentinite and steatitic rocks from Sete Fontes and Soeira/Pena Maquieira has a composition c lose to the ideal formula.

[1]  G. Prosser,et al.  Spinel-peridotites of the Frido Unit ophiolites (Southern Apennine-Italy): evidence for oceanic evolution , 2012 .

[2]  T. McCollom,et al.  Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge , 2009 .

[3]  J. González-Jiménez,et al.  Metamorphism on Chromite Ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria) , 2009 .

[4]  K. Khalil,et al.  Alteration Mechanisms of Chromian‐Spinel during Serpentinization at Wadi Sifein Area, Eastern Desert, Egypt , 2009 .

[5]  W. Bach,et al.  Fe–Ni–Co–O–S Phase Relations in Peridotite–Seawater Interactions , 2009 .

[6]  T. Grammatikopoulos,et al.  Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromon ophiolites (Central Greece) , 2007 .

[7]  J. Proenza,et al.  Distribution and mineralogy of platinum-group elements in altered chromitites of the Campo Formoso layered intrusion (Bahia State, Brazil): control by magmatic and hydrothermal processes , 2007 .

[8]  R. Frei,et al.  The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India , 2006 .

[9]  C. Viti,et al.  Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of “ferritchromit” rims and chlorite aureoles , 2005 .

[10]  G. Pooley Secondary and backscattered electron imaging of weathered chromian spinel. , 2006, Scanning.

[11]  R. Lunar,et al.  Mobilization of Al-Cr in spinel during deformation of ultramafic rocks from Cabo Ortegal and Braganca Complexes, NW Iberian Peninsula (Spain and Portugal) , 2002 .

[12]  P. Roeder,et al.  The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks , 2001 .

[13]  Y. Thibault,et al.  Metamorphism and PGE-Au content of chromitite from the Ipanema mafic/ultramafic Complex, Minas Gerais, Brazil , 2001 .

[14]  S. Barnes Chromite in Komatiites, II. Modification during Greenschist to Mid-Amphibolite Facies Metamorphism , 2000 .

[15]  R. Teixeira Serpentina, asbesto e talco : impacte ambiental das suas explorações no nordeste de Portugal , 2000 .

[16]  J. Solé,et al.  Uvarovite in podiform chromitite; the Moa-Baracoa ophiolitic massif, Cuba , 1999 .

[17]  A. Ribeiro,et al.  Geodynamic evolution of the Continental Allochthonous Terrane (CAT) of the Bragança Nappe Complex, NE Portugal , 1996 .

[18]  D. S. O'Hanley Serpentinites : records of tectonic and petrological history , 1996 .

[19]  D. Burkhard ACCESSORY CHROMIUM SPINELS : THEIR COEXISTENCE AND ALTERATION IN SERPENTINITES , 1993 .

[20]  J. Bridges,et al.  Platinum-group element mineralization in the chromite-rich rocks of the Bragansa massif, northern Portugal , 1993 .

[21]  K. Kimball Effects of hydrothermal alteration on the compositions of chromian spinels , 1990 .

[22]  P. Shen,et al.  STEM study of ferritchromit from the Heng-Chun Chromitite , 1988 .

[23]  G. Droop,et al.  A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria , 1987, Mineralogical Magazine.

[24]  P. Candela,et al.  Compositional zoning in unusual Zn-rich chromite from the Sykesville District of Maryland and its bearing on the origin of ferritchromit , 1987 .

[25]  B. Frost On the Stability of Sulfides, Oxides, and Native Metals in Serpentinite , 1985 .

[26]  D. H. Watkinson,et al.  GENESIS OF CHROMITITE FROM THE MITCHELL RANGE, CENTRAL BRITISH COLUMBIA , 1984 .

[27]  D. M. Hirst,et al.  The Metamorphism of the Blue River Ultramafic Body, Cassiar, British Columbia, Canada , 1977 .

[28]  W. Maclean,et al.  The paragenesis of zoned chromite from central Manitoba , 1975 .

[29]  O. Eckstrand The Dumont serpentinite; a model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks , 1975 .

[30]  G. Ulmer,et al.  Alteration of chromite during serpentinization in the Pennsylvania-Maryland District , 1974 .