Introduction to Bernoulli percolation

2 Everyone’s toolbox 4 2.1 Increasing coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Harris-FKG inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 The van den Berg Kesten and the Reimer inequalities . . . . . . . . . . . . . . . . . 7 2.4 Margulis-Russo formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

[1]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  J. Hammersley Percolation Processes: Lower Bounds for the Critical Probability , 1957 .

[3]  L. Russo A note on percolation , 1978 .

[4]  D. Welsh,et al.  Percolation probabilities on the square lattice , 1978 .

[5]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[6]  H. Kesten,et al.  Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation , 1987 .

[7]  M. Aizenman,et al.  Sharpness of the phase transition in percolation models , 1987 .

[8]  R. Burton,et al.  Density and uniqueness in percolation , 1989 .

[9]  G. Slade,et al.  Mean-field critical behaviour for percolation in high dimensions , 1990 .

[10]  Charles M. Newman,et al.  Percolation in half-spaces: equality of critical densities and continuity of the percolation probability , 1991 .

[11]  John Cardy Critical percolation in finite geometries , 1992 .

[12]  Yvan Saint-Aubin,et al.  Conformal invariance in two-dimensional percolation , 1994 .

[13]  Geoffrey Grimmett,et al.  Inequalities and Entanglements for Percolation and Random-Cluster Models , 1999 .

[14]  Oliver Riordan,et al.  A Short Proof of the Harris–Kesten Theorem , 2004, math/0410359.

[15]  Béla Bollobás,et al.  The critical probability for random Voronoi percolation in the plane is 1/2 , 2006 .

[16]  S. Smirnov,et al.  Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.

[17]  B. Bollobás,et al.  Percolation on Self-Dual Polygon Configurations , 2010, 1001.4674.

[18]  H. Duminil-Copin,et al.  The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$ , 2010, 1007.0575.

[19]  Y. Peres,et al.  Critical Percolation on any Nonamenable Group has no Infinite Clusters , 2011 .

[20]  V. Sidoravicius,et al.  Absence of Infinite Cluster for Critical Bernoulli Percolation on Slabs , 2014, 1401.7130.

[21]  V. Tassion Crossing probabilities for Voronoi percolation , 2014, 1410.6773.

[22]  Planarité et Localité en Percolation , 2014 .

[23]  H. Duminil-Copin,et al.  A new proof of the sharpness of the phase transition for Bernoulli percolation on $\mathbb Z^d$ , 2015, 1502.03051.

[24]  H. Duminil-Copin,et al.  A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model , 2015, Communications in Mathematical Physics.

[25]  Critical percolation on any quasi-transitive graph of exponential growth has no infinite clusters , 2016, 1605.05301.

[26]  Vincent Tassion,et al.  Sharp phase transition for the random-cluster and Potts models via decision trees , 2017, Annals of Mathematics.