Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables

Several methods have been developed for the analysis of a mixture of qualitative and quantitative variables, and one, called PCAMIX, includes ordinary principal component analysis (PCA) and multiple correspondence analysis (MCA) as special cases. The present paper proposes several techniques for simple structure rotation of a PCAMIX solution based on the rotation of component scores and indicates how these can be viewed as generalizations of the simple structure methods for PCA. In addition, a recently developed technique for the analysis of mixtures of qualitative and quantitative variables, called INDOMIX, is shown to construct component scores (without rotational freedom) maximizing the quartimax criterion over all possible sets of component scores. A numerical example is used to illustrate the implication that when used for qualitative variables, INDOMIX provides axes that discriminate between the observation units better than do those generated from MCA.

[1]  G. A. Ferguson,et al.  The concept of parsimony in factor analysis , 1954 .

[2]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[3]  H. Harman Modern factor analysis , 1961 .

[4]  G. A. Ferguson,et al.  A general rotation criterion and its use in orthogonal rotation , 1970 .

[5]  R. Jennrich Orthogonal rotation algorithms , 1970 .

[6]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[7]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[8]  Gilbert Saporta,et al.  Quelques applications des opérateurs d'Escoufier au traitement des variables qualitatives , 1976 .

[9]  J. Leeuw,et al.  A new computational method to fit the weighted euclidean distance model , 1978 .

[10]  B. Escofier Traitement simultané de variables qualitatives et quantitatives en analyse factorielle , 1979 .

[11]  Shizuhiko Nishisato,et al.  Piecewise method of reciprocal averages for dual scaling of multiple-choice data , 1980 .

[12]  G. M. Southward,et al.  Analysis of Categorical Data: Dual Scaling and Its Applications , 1981 .

[13]  Jos M. F. ten Berge,et al.  A generalization of Kristof's theorem on the trace of certain matrix products , 1983 .

[14]  J. Berge,et al.  A joint treatment of varimax rotation and the problem of diagonalizing symmetric matrices simultaneously in the least-squares sense , 1984 .

[15]  Michel Tenenhaus,et al.  An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data , 1985 .

[16]  Principal Components Analysis on a mixture of quantitative and qualitative data based on generalized correlation coefficients , 1988 .

[17]  Henk A. L. Kiers,et al.  A treatment of the Orthomax rotation family in terms of diagonalization, and a re-examination of a singular value approach to Varimax rotation , 1988 .

[18]  R. Jennrich,et al.  Quartic rotation criteria and algorithms , 1988 .

[19]  Henk A. L. Kiers A computational short-cut for INDSCAL with orthonormality constraints on positive semi-definite matrices of low rank , 1989 .

[20]  Henk A. L. Kiers,et al.  Indscal for the analysis of categorical data , 1989 .

[21]  Henk A. L. Kiers,et al.  Majorization as a tool for optimizing a class of matrix functions , 1990 .

[22]  M. Hill,et al.  Nonlinear Multivariate Analysis. , 1990 .

[23]  H. Kiers,et al.  Three-way methods for the analysis of qualitative and quantitative two-way data. , 1991 .