Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables
暂无分享,去创建一个
[1] G. A. Ferguson,et al. The concept of parsimony in factor analysis , 1954 .
[2] H. Kaiser. The varimax criterion for analytic rotation in factor analysis , 1958 .
[3] H. Harman. Modern factor analysis , 1961 .
[4] G. A. Ferguson,et al. A general rotation criterion and its use in orthogonal rotation , 1970 .
[5] R. Jennrich. Orthogonal rotation algorithms , 1970 .
[6] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[7] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[8] Gilbert Saporta,et al. Quelques applications des opérateurs d'Escoufier au traitement des variables qualitatives , 1976 .
[9] J. Leeuw,et al. A new computational method to fit the weighted euclidean distance model , 1978 .
[10] B. Escofier. Traitement simultané de variables qualitatives et quantitatives en analyse factorielle , 1979 .
[11] Shizuhiko Nishisato,et al. Piecewise method of reciprocal averages for dual scaling of multiple-choice data , 1980 .
[12] G. M. Southward,et al. Analysis of Categorical Data: Dual Scaling and Its Applications , 1981 .
[13] Jos M. F. ten Berge,et al. A generalization of Kristof's theorem on the trace of certain matrix products , 1983 .
[14] J. Berge,et al. A joint treatment of varimax rotation and the problem of diagonalizing symmetric matrices simultaneously in the least-squares sense , 1984 .
[15] Michel Tenenhaus,et al. An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data , 1985 .
[16] Principal Components Analysis on a mixture of quantitative and qualitative data based on generalized correlation coefficients , 1988 .
[17] Henk A. L. Kiers,et al. A treatment of the Orthomax rotation family in terms of diagonalization, and a re-examination of a singular value approach to Varimax rotation , 1988 .
[18] R. Jennrich,et al. Quartic rotation criteria and algorithms , 1988 .
[19] Henk A. L. Kiers. A computational short-cut for INDSCAL with orthonormality constraints on positive semi-definite matrices of low rank , 1989 .
[20] Henk A. L. Kiers,et al. Indscal for the analysis of categorical data , 1989 .
[21] Henk A. L. Kiers,et al. Majorization as a tool for optimizing a class of matrix functions , 1990 .
[22] M. Hill,et al. Nonlinear Multivariate Analysis. , 1990 .
[23] H. Kiers,et al. Three-way methods for the analysis of qualitative and quantitative two-way data. , 1991 .