Towards the automatic classification of neurons

The classification of neurons into types has been much debated since the inception of modern neuroscience. Recent experimental advances are accelerating the pace of data collection. The resulting growth of information about morphological, physiological, and molecular properties encourages efforts to automate neuronal classification by powerful machine learning techniques. We review state-of-the-art analysis approaches and the availability of suitable data and resources, highlighting prominent challenges and opportunities. The effective solution of the neuronal classification problem will require continuous development of computational methods, high-throughput data production, and systematic metadata organization to enable cross-laboratory integration.

[1]  David S. Siroky Navigating Random Forests and related advances in algorithmic modeling , 2009 .

[2]  D. Heckerman,et al.  Learning Transcriptional Regulatory Relationships Using Sparse Graphical Models , 2012, PloS one.

[3]  M. Salganicoff,et al.  Unsupervised waveform classification for multi-neuron recordings: a real-time, software-based system. I. Algorithms and implementation , 1988, Journal of Neuroscience Methods.

[4]  R. Yuste,et al.  Classification of neocortical interneurons using affinity propagation , 2013, Front. Neural Circuits.

[5]  D. Lewis,et al.  Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. , 2012, Journal of neurophysiology.

[6]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[7]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[8]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[9]  Richard P. Heitz,et al.  Biophysical support for functionally distinct cell types in the frontal eye field. , 2009, Journal of neurophysiology.

[10]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[11]  David Machin,et al.  Sample Size Tables for Clinical Studies , 1997 .

[12]  J. Bornstein,et al.  Electrophysiological characterization of myenteric neurons: how do classification schemes relate? , 1994, Journal of the autonomic nervous system.

[13]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[14]  Akira Chiba,et al.  Motor neuron morphology estimation for its classification in the Drosophila brain , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[15]  S. Nelson,et al.  The problem of neuronal cell types: a physiological genomics approach , 2006, Trends in Neurosciences.

[16]  M. Frotscher,et al.  Characterization and distribution of Reelin-positive interneuron subtypes in the rat barrel cortex. , 2014, Cerebral cortex.

[17]  Concha Bielza,et al.  Bayesian Network Classifiers for Categorizing Cortical GABAergic Interneurons , 2015, Neuroinformatics.

[18]  J Anthony Movshon,et al.  Putting big data to good use in neuroscience , 2014, Nature Neuroscience.

[19]  R. Masland,et al.  Physiological clustering of visual channels in the mouse retina. , 2011, Journal of neurophysiology.

[20]  Ronald R. Coifman,et al.  Quantitative Arbor Analytics: Unsupervised Harmonic Co-Clustering of Populations of Brain Cell Arbors Based on L-Measure , 2014, Neuroinformatics.

[21]  Maryann E. Martone,et al.  An ontological approach to describing neurons and their relationships , 2012, Front. Neuroinform..

[22]  G. Ascoli,et al.  Effects of β-Catenin on Dendritic Morphology and Simulated Firing Patterns in Cultured Hippocampal Neurons , 2006, The Biological Bulletin.

[23]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[24]  Demian Battaglia,et al.  Classification of NPY-Expressing Neocortical Interneurons , 2009, The Journal of Neuroscience.

[25]  G. Ascoli Mobilizing the base of neuroscience data: the case of neuronal morphologies , 2006, Nature Reviews Neuroscience.

[26]  George Gaylord Simpson,et al.  The Principles of Classification and a Classification of Mammals. , 1945 .

[27]  Giorgio A Ascoli,et al.  Quantitative Investigations of Axonal and Dendritic Arbors , 2015, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[28]  R. Yuste,et al.  Neural Circuits Original Research Article Materials and Methods Preparation of Brain Slices , 2022 .

[29]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[30]  W. Gerstner,et al.  Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. , 2012, Journal of neurophysiology.

[31]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[32]  Nicolas Y. Masse,et al.  A Mutual Information Approach to Automate Identification of Neuronal Clusters in Drosophila Brain Images , 2012, Front. Neuroinform..

[33]  Jean-Marc Goaillard,et al.  Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression , 2007, Proceedings of the National Academy of Sciences.

[34]  Henry Markram,et al.  The human brain project. , 2012, Scientific American.

[35]  Gregor Eichele,et al.  A Digital Atlas of Ion Channel Expression Patterns in the Two-Week-Old Rat Brain , 2014, Neuroinformatics.

[36]  Ting Zhao,et al.  Automatic Neuron Type Identification by Neurite Localization in the Drosophila Medulla , 2014, ArXiv.

[37]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[38]  Steve Horvath,et al.  Molecular Systems Biology 5; Article number 291; doi:10.1038/msb.2009.46 Citation: Molecular Systems Biology 5:291 , 2022 .

[39]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[40]  Ruchi Parekh,et al.  Neuronal Morphology Goes Digital: A Research Hub for Cellular and System Neuroscience , 2013, Neuron.

[41]  Tatyana O. Sharpee,et al.  Toward Functional Classification of Neuronal Types , 2014, Neuron.

[42]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[43]  Gunnar Rätsch,et al.  The SHOGUN Machine Learning Toolbox , 2010, J. Mach. Learn. Res..

[44]  F. Collins,et al.  NIH plans to enhance reproducibility , 2014 .

[45]  A. Zaitsev Classification and function of GABAergic interneurons of the mammalian cerebral cortex , 2013, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology.

[46]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[47]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[48]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[49]  A. Harada,et al.  Uncovering genes required for neuronal morphology by morphology-based gene trap screening with a revertible retrovirus vector , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[50]  G. Ascoli,et al.  Neuronal Morphology Goes Digital: A Research Hub for Cellular and System Neuroscience , 2013, Neuron.

[51]  David H. Wolpert,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[52]  Larry W. Swanson,et al.  The neuron classification problem , 2007, Brain Research Reviews.

[53]  L. Wollmuth,et al.  Subgroups of parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. , 2013, Journal of neurophysiology.

[54]  O. Paulsen,et al.  Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex. , 2009, Cerebral cortex.

[55]  Hiroshi Motoda,et al.  Computational Methods of Feature Selection , 2022 .

[56]  Luciano da Fontoura Costa,et al.  Neural cell classification by Wavelets and multiscale curvature , 1998 .

[57]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[58]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[59]  Michael D. Kim,et al.  Patterning and organization of motor neuron dendrites in the Drosophila larva. , 2009, Developmental biology.

[60]  S. Nelson,et al.  Cell Type-Specific Transcriptomics in the Brain , 2011, The Journal of Neuroscience.

[61]  Concha Bielza,et al.  A Survey of L1 Regression , 2013 .

[62]  Akira Chiba,et al.  Part-based motor neuron recognition in the Drosophila ventral nerve cord , 2014, NeuroImage.

[63]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[64]  Matheus Palhares Viana,et al.  Morphological Homogeneity of Neurons: Searching for Outlier Neuronal Cells , 2012, Neuroinformatics.

[65]  Hongkui Zeng,et al.  Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. , 2015, Cerebral cortex.

[66]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[67]  Masato Inoue,et al.  Classification of extracellularly recorded neurons by their discharge patterns and their correlates with intracellularly identified neuronal types in the frontal cortex of behaving monkeys , 2010, The European journal of neuroscience.

[68]  F. Collins,et al.  Policy: NIH plans to enhance reproducibility , 2014, Nature.

[69]  G. Ascoli,et al.  L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies , 2008, Nature Protocols.

[70]  Thomas L. Madden,et al.  BLAST: at the core of a powerful and diverse set of sequence analysis tools , 2004, Nucleic Acids Res..

[71]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[72]  Concha Bielza,et al.  Bayesian network modeling of the consensus between experts: An application to neuron classification , 2014 .

[73]  Brian A. Nosek,et al.  Power failure: why small sample size undermines the reliability of neuroscience , 2013, Nature Reviews Neuroscience.

[74]  Kenneth D. Harris,et al.  Data Sharing for Computational Neuroscience , 2008, Neuroinformatics.

[75]  D. Santiago Ramon Y Cajal,et al.  Nuevo Concepto de la Histologia de los Centros Nerviosos , 1893, The Indian Medical Gazette.

[76]  R. Kerr,et al.  Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning , 2014, Science.

[77]  J. A. Dani,et al.  Quantitative unit classification of ventral tegmental area neurons in vivo. , 2012, Journal of neurophysiology.

[78]  Xiaohui Chen,et al.  A Two-Graph Guided Multi-task Lasso Approach for eQTL Mapping , 2012, AISTATS.

[79]  Frederik Sündermann,et al.  High-resolution imaging and evaluation of spines in organotypic hippocampal slice cultures. , 2012, Methods in molecular biology.

[80]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[81]  Gregory S.X.E. Jefferis,et al.  NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases , 2016, Neuron.

[82]  T. Jessell Neuronal specification in the spinal cord: inductive signals and transcriptional codes , 2000, Nature Reviews Genetics.

[83]  Kamran Diba,et al.  Neurosharing: large-scale data sets (spike, LFP) recorded from the hippocampal-entorhinal system in behaving rats , 2014, F1000Research.

[84]  T. Insel,et al.  The NIH BRAIN Initiative , 2013, Science.

[85]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[86]  Sen Song,et al.  A genetic and computational approach to structurally classify neuronal types , 2014, Nature Communications.

[87]  Staci A. Sorensen,et al.  Shifting the paradigm: new approaches for characterizing and classifying neurons , 2009, Current Opinion in Neurobiology.

[88]  Henry Markram,et al.  A hierarchical structure of cortical interneuron electrical diversity revealed by automated statistical analysis. , 2013, Cerebral cortex.

[89]  Satoshi Yamada,et al.  Neuron classification based on temporal firing patterns by the dynamical analysis with changing time resolution (DCT) method , 2003, Biological Cybernetics.

[90]  Giorgio A. Ascoli,et al.  Statistical analysis and data mining of digital reconstructions of dendritic morphologies , 2014, Front. Neuroanat..

[91]  Andrey A. Shabalin,et al.  Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..

[92]  Jonathan Stone,et al.  Parallel Processing in the Visual System: The Classification of Retinal Ganglion Cells and its Impact on the Neurobiology of Vision , 1983 .

[93]  Yuchio Yanagawa,et al.  Morpho-physiological Criteria Divide Dentatecc Gyrus Interneurons into Classes , 2013, Hippocampus.

[94]  Allan R. Jones,et al.  An anatomic gene expression atlas of the adult mouse brain , 2009, Nature Neuroscience.

[95]  Sacha B. Nelson,et al.  A Quantitative Comparison of Cell-Type-Specific Microarray Gene Expression Profiling Methods in the Mouse Brain , 2011, PloS one.

[96]  H. Seung,et al.  Neuronal Cell Types and Connectivity: Lessons from the Retina , 2014, Neuron.

[97]  Concha Bielza,et al.  Machine Learning in Bioinformatics , 2008, Encyclopedia of Database Systems.

[98]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[99]  R. Yuste,et al.  Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study , 2010, Developmental neurobiology.

[100]  Badrinath Roysam,et al.  The FARSIGHT Trace Editor: An Open Source Tool for 3-D Inspection and Efficient Pattern Analysis Aided Editing of Automated Neuronal Reconstructions , 2011, Neuroinformatics.

[101]  Harold W. Gutch,et al.  Beyond the frontiers of neuronal types , 2012, Front. Neural Circuits.

[102]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[103]  D. V. van Essen,et al.  Challenges and Opportunities in Mining Neuroscience Data , 2011, Science.

[104]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[105]  Jeremy MG Taylor,et al.  Validation of Biomarker-Based Risk Prediction Models , 2008, Clinical Cancer Research.

[106]  Giorgio A. Ascoli,et al.  The Coming of Age of the Hippocampome , 2010, Neuroinformatics.

[107]  Giorgio A. Ascoli,et al.  Digital Morphometry of Rat Cerebellar Climbing Fibers Reveals Distinct Branch and Bouton Types , 2012, The Journal of Neuroscience.

[108]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[109]  Christophe Bernard,et al.  Interneurons targeting similar layers receive synaptic inputs with similar kinetics , 2006, Hippocampus.

[110]  D. Sharpe Why the resistance to statistical innovations? Bridging the communication gap. , 2013, Psychological methods.

[111]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[112]  Karsten M. Borgwardt,et al.  ccSVM: correcting Support Vector Machines for confounding factors in biological data classification , 2011, Bioinform..

[113]  Y. B. Wah,et al.  Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests , 2011 .

[114]  Larry W. Swanson,et al.  BAMS Neuroanatomical Ontology: Design and Implementation , 2008, Frontiers Neuroinformatics.