Breaking Van Loan’s Curse: A Quest forStructure-Preserving Algorithms for Dense Structured Eigenvalue Problems

In 1981 Paige and Van Loan (Linear Algebra Appl 41:11–32, 1981) posed the open question to derive an \(\mathcal{O}(n^{3})\) numerically strongly backwards stable method to compute the real Hamiltonian Schur form of a Hamiltonian matrix. This problem is known as Van Loan’s curse. This chapter summarizes Volker Mehrmann’s work on dense structured eigenvalue problems, in particular, on Hamiltonian and symplectic eigenproblems. In the course of about 35 years working on and off on these problems the curse has been lifted by him and his co-workers. In particular, his work on SR methods and on URV-based methods for dense Hamiltonian and symplectic matrices and matrix pencils is reviewed. Moreover, his work on structure-preserving methods for other structured eigenproblems is discussed.

[1]  A. Bunse-Gerstner,et al.  A symplectic QR like algorithm for the solution of the real algebraic Riccati equation , 1986 .

[2]  Peter Benner,et al.  A Hamiltonian Krylov―Schur-type method based on the symplectic Lanczos process , 2011 .

[3]  Heike Fassbender,et al.  Error Analysis of the Symplectic Lanczos Method for the Symplectic Eigenvalue Problem , 2000 .

[4]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[5]  P. Benner,et al.  An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .

[6]  Daniel Kressner,et al.  Structure preservation: a challenge in computational control , 2003, Future Gener. Comput. Syst..

[7]  L. Elsner On some algebraic problems in connection with general elgenvalue algorithms , 1979 .

[8]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[9]  A. Bunse-Gerstner,et al.  The HHDR algorithm and its application to optimal control problems , 1989 .

[10]  Peter Benner,et al.  Two connections between the SR and HR eigenvalue algorithms , 1998 .

[11]  Volker Mehrmann,et al.  An analysis of structure preserving numerical methods for symplectic eigenvalue problems , 1991 .

[12]  Volker Mehrmann,et al.  A new block method for computing the Hamiltonian Schur form , 2009 .

[13]  V. Mehrmann,et al.  On Hamiltonian and symplectic Hessenberg forms , 1991 .

[14]  Ralph Byers,et al.  Hamiltonian and symplectic algorithms for the algebraic riccati equation , 1983 .

[15]  V. Mehrmann,et al.  Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications , 2005 .

[16]  Volker Mehrmann,et al.  A numerical method for computing the Hamiltonian Schur form , 2006, Numerische Mathematik.

[17]  David S. Watkins,et al.  Chasing algorithms for the eigenvalues problem , 1991 .

[18]  Volker Mehrmann,et al.  A quaternion QR algorithm , 1989 .

[19]  Peter Benner,et al.  A NOTE ON THE NUMERICAL SOLUTION OF COMPLEX HAMILTONIAN AND SKEW-HAMILTONIAN EIGENVALUE PROBLEMS , 1999 .

[20]  Volker Mehrmann,et al.  Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .

[21]  J. Bunch The weak and strong stability of algorithms in numerical linear algebra , 1987 .

[22]  David S. Watkins,et al.  Convergence of algorithms of decomposition type for the eigenvalue problem , 1991 .

[23]  Françoise Tisseur,et al.  Structured Mapping Problems for Matrices Associated with Scalar Products. Part I: Lie and Jordan Algebras , 2007, SIAM J. Matrix Anal. Appl..

[24]  A. Bunse-Gerstner Matrix factorizations for symplectic QR-like methods , 1986 .

[25]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[26]  Volker Mehrmann,et al.  Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..

[27]  Volker Mehrmann,et al.  A Chart of Numerical Methods for Structured Eigenvalue Problems , 1992, SIAM J. Matrix Anal. Appl..

[28]  Heike Faßbender,et al.  The parameterized SR algorithm for symplectic (butterfly) matrices , 2001, Math. Comput..

[29]  Peter Benner,et al.  An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Eigenvalue Problem , 2000, SIAM J. Matrix Anal. Appl..

[30]  David S. Watkins ON THE REDUCTION OF A HAMILTONIAN MATRIX TO HAMILTONIAN SCHUR FORM , 2006 .

[31]  C. Loan A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .

[32]  H. Faßbender Symplectic Methods for the Symplectic Eigenproblem , 2002, Springer US.

[33]  A. Pawell Condensed forms for symplectic matrices and symplectic pencils in optimal control , 1996 .

[34]  David S. Watkins,et al.  On Hamiltonian and symplectic Lanczos processes , 2004 .

[35]  Jean Della Dora,et al.  Sur quelques algorithmes de recherche de valeurs propres , 1973 .

[36]  G. Stewart Updating a Rank-Revealing ULV Decomposition , 1993, SIAM J. Matrix Anal. Appl..

[37]  Volker Mehrmann,et al.  A symplectic orthogonal method for single input or single ouput discrete time optimal quadratic control problems , 1988 .

[38]  G. W. Stewart,et al.  An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..

[39]  Daniel Kressner,et al.  Structured Condition Numbers for Invariant Subspaces , 2006, SIAM J. Matrix Anal. Appl..

[40]  Peter Benner,et al.  SR and SZ Algorithms for the Symplectic (Butterfly) Eigenproblem , 1999 .

[41]  Willis Lin,et al.  The shift-inverted J-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations (vol 33, pg 23, 1997) , 1997 .

[42]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[43]  R. Byers A Hamiltonian $QR$ Algorithm , 1986 .

[44]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[45]  Daniel Kressner,et al.  Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..

[46]  C. Loan,et al.  A Schur decomposition for Hamiltonian matrices , 1981 .

[47]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[48]  Peter Benner,et al.  The Symplectic Eigenvalue Problem, the Butterfly Form, the SR Algorithm, and the Lanczos Method , 1998 .

[49]  V. Mehrmann,et al.  A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .