Breaking Van Loan’s Curse: A Quest forStructure-Preserving Algorithms for Dense Structured Eigenvalue Problems
暂无分享,去创建一个
[1] A. Bunse-Gerstner,et al. A symplectic QR like algorithm for the solution of the real algebraic Riccati equation , 1986 .
[2] Peter Benner,et al. A Hamiltonian Krylov―Schur-type method based on the symplectic Lanczos process , 2011 .
[3] Heike Fassbender,et al. Error Analysis of the Symplectic Lanczos Method for the Symplectic Eigenvalue Problem , 2000 .
[4] A. Laub. A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.
[5] P. Benner,et al. An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .
[6] Daniel Kressner,et al. Structure preservation: a challenge in computational control , 2003, Future Gener. Comput. Syst..
[7] L. Elsner. On some algebraic problems in connection with general elgenvalue algorithms , 1979 .
[8] V. Mehrmann. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .
[9] A. Bunse-Gerstner,et al. The HHDR algorithm and its application to optimal control problems , 1989 .
[10] Peter Benner,et al. Two connections between the SR and HR eigenvalue algorithms , 1998 .
[11] Volker Mehrmann,et al. An analysis of structure preserving numerical methods for symplectic eigenvalue problems , 1991 .
[12] Volker Mehrmann,et al. A new block method for computing the Hamiltonian Schur form , 2009 .
[13] V. Mehrmann,et al. On Hamiltonian and symplectic Hessenberg forms , 1991 .
[14] Ralph Byers,et al. Hamiltonian and symplectic algorithms for the algebraic riccati equation , 1983 .
[15] V. Mehrmann,et al. Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications , 2005 .
[16] Volker Mehrmann,et al. A numerical method for computing the Hamiltonian Schur form , 2006, Numerische Mathematik.
[17] David S. Watkins,et al. Chasing algorithms for the eigenvalues problem , 1991 .
[18] Volker Mehrmann,et al. A quaternion QR algorithm , 1989 .
[19] Peter Benner,et al. A NOTE ON THE NUMERICAL SOLUTION OF COMPLEX HAMILTONIAN AND SKEW-HAMILTONIAN EIGENVALUE PROBLEMS , 1999 .
[20] Volker Mehrmann,et al. Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .
[21] J. Bunch. The weak and strong stability of algorithms in numerical linear algebra , 1987 .
[22] David S. Watkins,et al. Convergence of algorithms of decomposition type for the eigenvalue problem , 1991 .
[23] Françoise Tisseur,et al. Structured Mapping Problems for Matrices Associated with Scalar Products. Part I: Lie and Jordan Algebras , 2007, SIAM J. Matrix Anal. Appl..
[24] A. Bunse-Gerstner. Matrix factorizations for symplectic QR-like methods , 1986 .
[25] Volker Mehrmann,et al. Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[26] Volker Mehrmann,et al. Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..
[27] Volker Mehrmann,et al. A Chart of Numerical Methods for Structured Eigenvalue Problems , 1992, SIAM J. Matrix Anal. Appl..
[28] Heike Faßbender,et al. The parameterized SR algorithm for symplectic (butterfly) matrices , 2001, Math. Comput..
[29] Peter Benner,et al. An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Eigenvalue Problem , 2000, SIAM J. Matrix Anal. Appl..
[30] David S. Watkins. ON THE REDUCTION OF A HAMILTONIAN MATRIX TO HAMILTONIAN SCHUR FORM , 2006 .
[31] C. Loan. A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .
[32] H. Faßbender. Symplectic Methods for the Symplectic Eigenproblem , 2002, Springer US.
[33] A. Pawell. Condensed forms for symplectic matrices and symplectic pencils in optimal control , 1996 .
[34] David S. Watkins,et al. On Hamiltonian and symplectic Lanczos processes , 2004 .
[35] Jean Della Dora,et al. Sur quelques algorithmes de recherche de valeurs propres , 1973 .
[36] G. Stewart. Updating a Rank-Revealing ULV Decomposition , 1993, SIAM J. Matrix Anal. Appl..
[37] Volker Mehrmann,et al. A symplectic orthogonal method for single input or single ouput discrete time optimal quadratic control problems , 1988 .
[38] G. W. Stewart,et al. An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..
[39] Daniel Kressner,et al. Structured Condition Numbers for Invariant Subspaces , 2006, SIAM J. Matrix Anal. Appl..
[40] Peter Benner,et al. SR and SZ Algorithms for the Symplectic (Butterfly) Eigenproblem , 1999 .
[41] Willis Lin,et al. The shift-inverted J-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations (vol 33, pg 23, 1997) , 1997 .
[42] Nicholas J. Higham,et al. Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[43] R. Byers. A Hamiltonian $QR$ Algorithm , 1986 .
[44] V. Mehrmann,et al. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .
[45] Daniel Kressner,et al. Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..
[46] C. Loan,et al. A Schur decomposition for Hamiltonian matrices , 1981 .
[47] V. Mehrmann. The Autonomous Linear Quadratic Control Problem , 1991 .
[48] Peter Benner,et al. The Symplectic Eigenvalue Problem, the Butterfly Form, the SR Algorithm, and the Lanczos Method , 1998 .
[49] V. Mehrmann,et al. A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .