Quasi-interpolation in the Fourier algebra

[1]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[2]  H. Reiter Classical Harmonic Analysis and Locally Compact Groups , 1968 .

[3]  H. Reiter L1-Algebras and Segal Algebras , 1971 .

[4]  H. Feichtinger On a new Segal algebra , 1981 .

[5]  C. Micchelli,et al.  On the approximation order from certain multivariate spline spaces , 1984, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[6]  C. Chui,et al.  A natural formulation of quasi-interpolation by multivariate splines , 1987 .

[7]  C. Chui,et al.  A characterization of multivariate quasi-interpolation formulas and its applications , 1990 .

[8]  L. Schumaker,et al.  Curves and Surfaces , 1991, Lecture Notes in Computer Science.

[9]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[10]  R. Beatson,et al.  Quasi-interpolation in the Absence of Polynomial Reproduction , 1992 .

[11]  L. Schumaker,et al.  Numerical methods in approximation theory , 1992 .

[12]  C. D. Boor,et al.  Fourier analysis of the approximation power of principal shift-invariant spaces , 1992 .

[13]  E. Cheney,et al.  Quasi-interpolation with translates of a function having noncompact support , 1992 .

[14]  A. Ron,et al.  On multivariate approximation by integer translates of a basis function , 1992 .

[15]  R. Jia,et al.  A new version of the Strang-Fix conditions , 1993 .

[16]  W. Light,et al.  On local and controlled approximation order , 1993 .

[17]  R. Jia,et al.  Approximation by multiinteger translates of functions having global support , 1993 .

[18]  J. Lei Lp-Approximation by Certain Projection Operators , 1994 .

[19]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[20]  J. Lei On approximation by translates of globally supported functions , 1994 .

[21]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[22]  K. Zhao Density of Dilates of a Shift Invariant Subspace , 1994 .

[23]  G. Kyriazis Approximation from shift-invariant spaces , 1995 .

[24]  K. Zhao Simultaneous approximation from PSI spaces , 1995 .

[25]  Coordinate order of approximation by functional-based approximation operators , 1995 .

[26]  Ding-Xuan Zhou,et al.  Order of linear approximation from shift-invariant spaces , 1995 .

[27]  Hong-Ye Gao,et al.  Wavelet analysis [for signal processing] , 1996 .

[28]  Zongmin Wu,et al.  Construction Techniques for Highly Accurate Quasi-Interpolation Operators , 1997 .

[29]  E. Cheney,et al.  Approximation from shift-invariant spaces by integral operators , 1997 .

[30]  J. Benedetto,et al.  Sampling multipliers and the Poisson Summation Formula , 1997 .

[31]  H. Feichtinger,et al.  Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .

[32]  Michael J. Johnson On the Approximation Order of Principal Shift-Invariant Subspaces ofLp(Rd) , 1997 .

[33]  H. Feichtinger,et al.  A Banach space of test functions for Gabor analysis , 1998 .

[34]  M. Unser,et al.  Approximation Error for Quasi-Interpolators and (Multi-)Wavelet Expansions , 1999 .

[35]  K. Jetter,et al.  A survey on L2-approximation order from shift-invariant spaces , 1999 .

[36]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[37]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[38]  N. Dyn,et al.  Multivariate Approximation and Applications: Index , 2001 .

[39]  Marek Beska,et al.  Asymptotic formula for the error in cardinal interpolation , 2001, Numerische Mathematik.

[40]  H. Feichtinger SPLINE-TYPE SPACES IN GABOR ANALYSIS , 2002 .

[41]  H. Feichtinger,et al.  Varying the time-frequency lattice of Gabor frames , 2003 .

[42]  K. Gröchenig,et al.  Wiener's lemma for twisted convolution and Gabor frames , 2003 .

[43]  Rong-Qing Jia,et al.  Approximation with scaled shift-invariant spaces by means of quasi-projection operators , 2004, J. Approx. Theory.

[44]  Olga Holtz,et al.  Approximation orders of shift-invariant subspaces of Ws2(Rd) , 2005, J. Approx. Theory.

[45]  Norbert Kaiblinger,et al.  Approximation of the Fourier Transform and the Dual Gabor Window , 2005 .

[46]  H. Feichtinger,et al.  The Segal Algebra ${\bf S}_0({\Bbb R}^d)$ and Norm Summability of Fourier Series and Fourier Transforms , 2006 .