Nonlinear Vibrations and Frequency Response Analysis of a Cantilever Beam Under Periodically Varying Magnetic Field

In this paper, nonlinear vibration of a cantilever beam with tip mass subjected to periodically varying axial load and magnetic field has been studied. The temporal equation of motion of the system containing linear and nonlinear parametric excitation terms along with nonlinear damping, geometric and inertial types of nonlinear terms has been derived and solved using method of multiple scales. The stability and bifurcation analysis for three different resonance conditions were investigated. The numerical results demonstrate that while in simple resonance case with increase in magnetic field strength, the system becomes unstable, in principal parametric or simultaneous resonance cases, the vibration can be reduced significantly by increasing the magnetic field strength. The present work will be very useful for feed forward vibration control of magnetoelastic beams which are used nowadays in many industrial applications.