Finite Element Modelling, Predictive Modelling and Optimization of Metal Inert Gas, Tungsten Inert Gas and Friction Stir Welding Processes: A Comprehensive Review

[1]  K. Kalita,et al.  Optimizing Friction Stir Welding of Dissimilar Grades of Aluminum Alloy Using WASPAS , 2022, Materials.

[2]  Ji Hoon Kim,et al.  A multi-objective optimization using response surface model coupled with particle swarm algorithm on FSW process parameters , 2022, Scientific Reports.

[3]  A. Sinha,et al.  Optimization of process parameters of friction stir welding using desirability function analysis , 2022, Welding International.

[4]  B. Pant,et al.  Optimization of Process Parameters for Friction Stir Welding of Different Aluminum Alloys AA2618 to AA5086 by Taguchi Method , 2022 .

[5]  G. Kumar,et al.  Optimization of FSW process parameters for welding dissimilar 6061 and 7075 Al alloys using Taguchi design approach , 2022 .

[6]  A. Manikandan,et al.  Friction stir welding parameter optimization using novel multi objective dragonfly algorithm , 2021 .

[7]  A. Shettigar,et al.  Parameter investigation and optimization of friction stir welded AA6061/TiO2 composites through TLBO , 2021, Welding in the World.

[8]  Akshansh Mishra,et al.  Machine learning classification-based approach for mechanical properties of friction stir welding of copper , 2021, Manufacturing Letters.

[9]  T. Sathish,et al.  Parameters Optimization of Dissimilar Friction Stir Welding for AA7079 and AA8050 through RSM , 2021, Advances in Materials Science and Engineering.

[10]  A. Sivakumar,et al.  Optimizing GMAW parameters to achieve high impact strength of the dissimilar weld joints using Taguchi approach , 2021, Materials Today: Proceedings.

[11]  V. Patel,et al.  Optimization of Activated Tungsten Inert Gas Welding Process Parameters Using Heat Transfer Search Algorithm: With Experimental Validation Using Case Studies , 2021, Metals.

[12]  S. Chakraborty,et al.  Performance Analysis of Radial Basis Function Metamodels for Predictive Modelling of Laminated Composites , 2021, Materials.

[13]  C. Furtado,et al.  A methodology to generate design allowables of composite laminates using machine learning , 2021, International Journal of Solids and Structures.

[14]  D. Pimenov,et al.  Investigations on quality characteristics in gas tungsten arc welding process using artificial neural network integrated with genetic algorithm , 2021, The International Journal of Advanced Manufacturing Technology.

[15]  Bin Wang,et al.  Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: Experiments and numerical simulations , 2021 .

[16]  Subhash Chandra Saha,et al.  An intelligent multi-objective framework for optimizing friction-stir welding process parameters , 2021, Appl. Soft Comput..

[17]  Guillermo Alvarez Bestard,et al.  Analysis of GMAW process with deep learning and machine learning techniques , 2021 .

[18]  Ö. Karakaş,et al.  Two different finite element models investigation of the plunge stage in joining AZ31B magnesium alloy with friction stir welding , 2021, SN Applied Sciences.

[19]  Neelesh Maheshwari,et al.  Finite Element Analysis and Multi-criteria Decision-Making (MCDM)-Based Optimal Design Parameter Selection of Solid Ventilated Brake Disc , 2021, Journal of The Institution of Engineers (India): Series C.

[20]  R. Bhushan,et al.  Optimization of Friction Stir Welding Parameters to Maximize Hardness of AA6082/Si3N4 and AA6082/SiC Composites Joints , 2021, Silicon.

[21]  S. Akinlabi,et al.  Two-staged technique for determining ultimate tensile strength in MIG welding of mild steel , 2020, Materials Today: Proceedings.

[22]  Ji-hoon Kim,et al.  Probing the Mechanism of Friction Stir Welding with ALE Based Finite Element Simulations and Its Application to Strength Prediction of Welded Aluminum , 2020, Metals and Materials International.

[23]  S. C. Saha,et al.  Determination of best tool geometry for friction stir welding of AA 6061-T6 using hybrid PCA-TOPSIS optimization method , 2020 .

[24]  Xinghui Han,et al.  Sensitivity analysis of the MIG welding process parameters based on response surface method , 2020 .

[25]  M. Guvenc,et al.  Artificial Intelligence Applications for Friction Stir Welding: A Review , 2020, Metals and Materials International.

[26]  P. Sakthivel,et al.  Modelling and experimental validation of TIG welding of INCONEL 718 , 2020 .

[27]  L. Natrayan,et al.  Optimization of process parameters in TIG welding of AISI 4140 stainless steel using Taguchi technique , 2020 .

[28]  Joy Prakash Misra,et al.  Modeling of friction stir welding of aviation grade aluminium alloy using machine learning approaches , 2020, International Journal of Modelling and Simulation.

[29]  P. Khanna,et al.  Mathematical analysis of the effect of process parameters on angular distortion of MIG welded stainless steel 202 plates by using the technique of response surface Methodology , 2020 .

[30]  Yi Yang,et al.  Random forest based artificial intelligent model for predicting failure envelopes of caisson foundations in sand , 2020 .

[31]  Prateep Misra,et al.  Real time monitoring and control of friction stir welding process using multiple sensors , 2020 .

[32]  C. Rathinasuriyan,et al.  Optimisation of submerged friction stir welding parameters of aluminium alloy using RSM and GRA , 2020, Advances in Materials and Processing Technologies.

[33]  P. S. Sivasakthivel,et al.  Modelling and optimisation of welding parameters for multiple objectives in pre-heated gas metal arc welding process using nature instigated algorithms , 2020 .

[34]  P. Asadi,et al.  Effects of material type, preheating and weld pass number on residual stress of welded steel pipes by multi-pass TIG welding (C-Mn, SUS304, SUS316) , 2020 .

[35]  Y. Shin,et al.  Analysis of defect formation mechanisms and their effects on weld strength during friction stir welding of Al 6061-T6 via experiments and finite element modeling , 2020 .

[36]  Heikki Handroos,et al.  Development of an Artificial Intelligence Powered TIG Welding Algorithm for the Prediction of Bead Geometry for TIG Welding Processes using Hybrid Deep Learning , 2020, Metals.

[37]  R. Parameshwaran,et al.  A multi-objective optimization of the friction stir welding process using RSM-based-desirability function approach for joining aluminum alloy 6063-T6 pipes , 2020, Structural and Multidisciplinary Optimization.

[38]  Vipin,et al.  Multi-response Mathematical Modeling for Prediction of Weld Bead Geometry of AA6061-T6 Using Response Surface Methodology , 2020, Transactions of the Indian Institute of Metals.

[39]  Nanda Naik Korra,et al.  Systematic Welding Process Parameter Optimization in Activated Tungsten Inert Gas (A-TIG) Welding of Inconel 625 , 2020, Transactions of the Indian Institute of Metals.

[40]  Marco Castellani,et al.  The use of multi-objective genetic algorithm (MOGA) in optimizing and predicting weld quality , 2020 .

[41]  G. Casalino,et al.  FEM model for TIG hybrid laser butt welding of 6 mm thick austenitic to martensitic stainless steels , 2020 .

[42]  A Sumesh,et al.  A Computational approach in optimizing process parameters influencing the heat input and Depth of Penetration of Tungsten Inert Gas welding of Austenitic Stainless Steel(AISI 316L) using Response Surface Methodology , 2020 .

[43]  Pramod Kumar,et al.  Investigation of numerical modelling of TIG welding of austenitic stainless steel (304L) , 2020 .

[44]  M. Rady,et al.  Ti–6Al–4V TIG Weld Analysis Using FEM Simulation and Experimental Characterization , 2020, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering.

[45]  Ali Heidari,et al.  Multi-objective optimization of residual stresses and distortion in submerged arc welding process using Genetic Algorithm and Harmony Search , 2020 .

[46]  Sudhir Kumar,et al.  Optimization of process parameters of metal inert gas welding with preheating on AISI 1018 mild steel using grey based Taguchi method , 2019 .

[47]  Gu Xing-sheng,et al.  Multi-objective path optimization for arc welding robot based on discrete DN multi-objective particle swarm optimization , 2019, International Journal of Advanced Robotic Systems.

[48]  Mayorkinos Papaelias,et al.  Automated defect classification of SS304 TIG welding process using visible spectrum camera and machine learning , 2019, NDT & E International.

[49]  P. Ganeshkumar,et al.  Monitoring of friction stir welding based on vision system coupled with Machine learning algorithm , 2019, Measurement.

[50]  M. Papaelias,et al.  Automated defect classification of Aluminium 5083 TIG welding using HDR camera and neural networks , 2019, Journal of Manufacturing Processes.

[51]  D. K. Dwivedi,et al.  A-TIG welding of dissimilar P92 steel and 304H austenitic stainless steel: Mechanisms, microstructure and mechanical properties , 2019, Journal of Manufacturing Processes.

[52]  S. Haldar,et al.  Search for accurate RSM metamodels for structural engineering , 2019, Journal of Reinforced Plastics and Composites.

[53]  A. S. Ahmad,et al.  Finite Element Prediction of Residual Stress and Deformation Induced by Double-Pass TIG Welding of Al 2219 Plate , 2019, Materials.

[54]  E Ikpe Aniekan,et al.  Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate , 2019 .

[55]  Rohit Kshirsagar,et al.  Prediction of Bead Geometry Using a Two-Stage SVM–ANN Algorithm for Automated Tungsten Inert Gas (TIG) Welds , 2019, Journal of Manufacturing and Materials Processing.

[56]  M. Khalid Process Parameters Optimization Of Tungsten Inert Gas Welding by Taguchi Method , 2019, 2019 Advances in Science and Engineering Technology International Conferences (ASET).

[57]  Zhiping Luo,et al.  A review on dissimilar metals’ welding methods and mechanisms with interlayer , 2019, The International Journal of Advanced Manufacturing Technology.

[58]  Zhili Feng,et al.  Finite Element Analysis and In-Situ Measurement of Out-of-Plane Distortion in Thin Plate TIG Welding , 2019, Materials.

[59]  R. Rudrapati,et al.  Design Optimization of Welding Parameters for Multi-response Optimization in TIG Welding Using RSM-Based Grey Relational Analysis , 2019, Lecture Notes on Multidisciplinary Industrial Engineering.

[60]  A. Shettigar,et al.  Multi-objective Optimization of FSW Process Variables of Aluminium Matrix Composites Using Taguchi-Based Grey Relational Analysis , 2019, Lecture Notes on Multidisciplinary Industrial Engineering.

[61]  A. Reddy,et al.  Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA) , 2018 .

[62]  Xiang Huang,et al.  Multi-objective optimization of mechanical quality and stability during micro resistance spot welding , 2018, The International Journal of Advanced Manufacturing Technology.

[63]  X. Liu,et al.  Simulated and experimental studies of laser-MIG hybrid welding for plate-pipe dissimilar steel , 2018, The International Journal of Advanced Manufacturing Technology.

[64]  S. Singhal,et al.  Modelling and optimization of process parameters for friction stir welding of armor alloy using RSM and GRA-PCA approach , 2018, Materials Research Express.

[65]  Hongtao Ding,et al.  An efficient coupled Eulerian-Lagrangian finite element model for friction stir processing , 2018, The International Journal of Advanced Manufacturing Technology.

[66]  Huijun Li,et al.  Analysis of the Effect of Tungsten Inert Gas Welding Sequences on Residual Stress and Distortion of CFETR Vacuum Vessel Using Finite Element Simulations , 2018, Metals.

[67]  Jae-Woong Kim,et al.  Analysis of welding residual stress formation behavior during circumferential TIG welding of a pipe , 2018, Thin-Walled Structures.

[68]  K Siddharth Kumaran,et al.  Optimization of parameters involved in robotic MIG welding process based on quality responses , 2018 .

[69]  J. P. Misra,et al.  Performance evaluation of friction stir welding using machine learning approaches , 2018, MethodsX.

[70]  Yongxian Huang,et al.  Friction stir welding of dissimilar aluminum alloys and steels: a review , 2018, The International Journal of Advanced Manufacturing Technology.

[71]  J. Edwin Raja Dhas,et al.  Optimizing parameters of TIG welding process using grey wolf optimization concerning 15CDV6 steel , 2018, Evol. Intell..

[72]  D. Vijayan,et al.  Multi Objective Process Parameters Optimization of Friction Stir Welding using NSGA – II , 2018, IOP Conference Series: Materials Science and Engineering.

[73]  D. Vijayan,et al.  Process Parameter Optimization in TIG Welding of AISI 4340 Low Alloy Steel Welds by Genetic Algorithm , 2018, IOP Conference Series: Materials Science and Engineering.

[74]  José L. Meseguer-Valdenebro,et al.  Electrical parameters optimisation on welding geometry in the 6063-T alloy using the Taguchi methods , 2018, The International Journal of Advanced Manufacturing Technology.

[75]  D. K. Dwivedi,et al.  Study of mechanism, microstructure and mechanical properties of activated flux TIG welded P91 Steel-P22 steel dissimilar metal joint , 2018, Materials Science and Engineering: A.

[76]  A. Ghosh,et al.  Metaheuristic Based Parametric Optimization of TIG Welded Joint , 2018, Transactions of the Indian Institute of Metals.

[77]  G. Nandi,et al.  Investigation on dissimilar welding of AISI 409 ferritic stainless steel to AISI 316L austenitic stainless steel by using grey based Taguchi method , 2018 .

[78]  A. McAndrew,et al.  Prediction of residual stress within linear friction welds using a computationally efficient modelling approach , 2018 .

[79]  M. Abd-Rabou,et al.  Finite element modeling of aluminum alloy AA5083-O friction stir welding process , 2018 .

[80]  A. Noorul Haq,et al.  Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modeling with genetic algorithm , 2017, The International Journal of Advanced Manufacturing Technology.

[81]  Surjya K. Pal,et al.  Finite element simulation of pin shape influence on material flow, forces in friction stir welding , 2018 .

[82]  Sandeep Sharma,et al.  Mathematical Modeling of Process Parameters of Friction Stir Welded Aluminium Alloy Joints Using Central Composite Design , 2018 .

[83]  V. Mohanavel,et al.  Optimization of tungsten inert gas welding parameters to: attain maximum impact strength in AA6061 alloy joints using Taguchi Technique , 2018 .

[84]  R. Padmanaban,et al.  Artificial neural network model for predicting the tensile strength of friction stir welded aluminium alloy AA1100 , 2018 .

[85]  M. Jenarthanan,et al.  Impact of friction stir welding (FSW) process parameters on tensile strength during dissimilar welds of AA2014 and AA6061 , 2018 .

[86]  Pitchipoo Pandian,et al.  A Novel Optimization of Friction Stir Welding Process Parameters on Aluminum Alloy 6061-T6 , 2018 .

[87]  A. Awale,et al.  Metal Inert Gas (MIG) Welding Process Optimization using Teaching-Learning Based Optimization (TLBO) Algorithm , 2018 .

[88]  A. G. Thakur,et al.  Multi-Objective Optimization of Friction Stir Welding of Aluminium Alloy 6082-T6 Using hybrid Taguchi-Grey Relation Analysis- ANN Method , 2018 .

[89]  D. Dolas,et al.  Optimization of Activated Tungsten Inert Gas Welding of 304L Austenitic Stainless Steel , 2018 .

[90]  Pradeep Khanna,et al.  Development of Mathematical Models for Prediction and Control of Weld Bead Dimensions in MIG Welding of Stainless Steel 409M , 2018 .

[91]  Juri Saedon,et al.  Development of prediction system model for mechanical property in friction stir welding using support vector machine (SVM) , 2018 .

[92]  Teng Wang,et al.  Real-time monitoring of high-power disk laser welding based on support vector machine , 2018, Comput. Ind..

[93]  B. Parida,et al.  Optimization of friction stir welding process using NSGA-II and DEMO , 2019, Neural Computing and Applications.

[94]  Filipe Teixeira-Dias,et al.  Prediction of friction stir welding effects on AA2024-T3 plates and stiffened panels using a shell-based finite element model , 2017 .

[95]  F. Berto,et al.  A FEM based methodology to simulate multiple crack propagation in friction stir welds , 2017 .

[96]  V. Balasubramanian,et al.  A study to estimate the tensile strength of friction stir welded AA 5059 aluminium alloy joints , 2017 .

[97]  A. Noorul Haq,et al.  Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modeling with genetic algorithm , 2017, The International Journal of Advanced Manufacturing Technology.

[98]  Tanmoy Mukhopadhyay,et al.  Metamodel based high-fidelity stochastic analysis of composite laminates: A concise review with critical comparative assessment , 2017 .

[99]  Sukhomay Pal,et al.  Torque based defect detection and weld quality modelling in friction stir welding process , 2017 .

[100]  Sukhomay Pal,et al.  Design and development of force and torque measurement setup for real time monitoring of friction stir welding process , 2017 .

[101]  Zhenyu Zhang,et al.  Finite element modeling of grain growth by point tracking method in friction stir welding of AA6082-T6 , 2017 .

[102]  Xiang Chen,et al.  Microstructure evolution and bonding mechanism of Ti2SnC-Ti6Al4V joint by using Cu pure foil interlayer , 2017 .

[103]  Abhijit Saha,et al.  Multi-objective optimization of manual metal arc welding process parameters for nano-structured hardfacing material using hybrid approach , 2017 .

[104]  B. T. Hang Tuah Baharudin,et al.  Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm , 2017, Materials.

[105]  Mohammadjavad Mohammadisefat,et al.  Evaluation of dissimilar joints properties of 5083-H12 and 6061-T6 aluminum alloys produced by tungsten inert gas and friction stir welding , 2017 .

[106]  Mozammel Mia,et al.  Mono-objective and multi-objective optimization of performance parameters in high pressure coolant assisted turning of Ti-6Al-4V , 2017 .

[107]  T. Alwarsamy,et al.  Effect of process parameters on ferrite number in cladding of 317L stainless steel by pulsed MIG welding , 2017 .

[108]  X. Zhan,et al.  Numerical simulation on backward deformation of MIG multi-layer and multi-pass welding of thick Invar alloy , 2017 .

[109]  Surjya K. Pal,et al.  Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy , 2017 .

[110]  Atul Kumar Sahu,et al.  Optimization of weld bead geometry of MS plate (Grade: IS 2062) in the context of welding: a comparative analysis of GRA and PCA–Taguchi approaches , 2017 .

[111]  Qing Yang,et al.  Analysis of Thermo-Elastic Fracture Problem during Aluminium Alloy MIG Welding Using the Extended Finite Element Method , 2017 .

[112]  M. P. Jenarthanan,et al.  Analysis of factors influencing tensile strength in dissimilar welds of AA2024 and AA6061 produced by Friction Stir Welding (FSW) , 2017 .

[113]  P. Umamaheswarrao,et al.  Modelling and Optimisation of Friction Stir Welding on AA6061 Alloy , 2017 .

[114]  S. Chinchanikar,et al.  Evaluation of Tensile Strength of a Butt-Welded Joint Considering the Effect of Welding Parameters Using Response Surface Methodology , 2017 .

[115]  W. Piekarska,et al.  Numerical Analysis and Experimental Research on Deformation of Flat Made of TIG Welded 0H18N9 Steel , 2017 .

[116]  Shekhar Srivastava,et al.  Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology , 2017 .

[117]  Yi Liu,et al.  Effect of metal inert gas welding on the behaviour and strength of aluminum stiffened plates , 2016 .

[118]  Antonio Domenico Ludovico,et al.  Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network , 2016, Materials.

[119]  A. Fuji,et al.  Joining phenomena and tensile strength of friction welded joint between Ti–6Al–4V titanium alloy and low carbon steel , 2016 .

[120]  Farhad Kolahan,et al.  Multi-variable measurements and optimization of GMAW parameters for API-X42 steel alloy using a hybrid BPNN–PSO approach , 2016 .

[121]  S. Bhosle,et al.  Optimization of MIG Welding Parameters to Control the Angular Distortion in Fe410WA Steel , 2016 .

[122]  Surjya K. Pal,et al.  A study on the variation of forces and temperature in a friction stir welding process: A finite element approach , 2016 .

[123]  G. Faraji,et al.  Mathematical modeling and optimization of friction stir welding process parameters in AA5083 and AA7075 aluminum alloy joints , 2016 .

[124]  Mohsen Hamedi,et al.  Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm , 2014, Journal of Intelligent Manufacturing.

[125]  T. Jayakumar,et al.  Optimization of Welding Process Parameters for 9Cr-1Mo Steel Using RSM and GA , 2016 .

[126]  T. Warren Liao,et al.  Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network , 2016 .

[127]  Xinjiang Fei,et al.  Effect of pre-hole offset on the property of the joint during laser-assisted friction stir welding of dissimilar metals steel and aluminum alloys , 2016 .

[128]  Hari Singh,et al.  Friction stir welding: multi-response optimisation using Taguchi-based GRA , 2016 .

[129]  G. Nandi,et al.  Parametric Optimization of MIG Welding on 316L Austenitic Stainless Steel by Grey-based Taguchi Method , 2016 .

[130]  P. Strauss Principles Of Welding Processes Physics Chemistry And Metallurgy , 2016 .

[131]  N. D. Ghetiya,et al.  Multi-objective Optimization of FSW Process Parameters of Aluminium Alloy Using Taguchi-Based Grey Relational Analysis , 2016, Transactions of the Indian Institute of Metals.

[132]  P. Allison,et al.  Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys , 2015 .

[133]  Surjya K. Pal,et al.  Friction stir weld classification by applying wavelet analysis and support vector machine on weld surface images , 2015 .

[134]  Hamid Shahabi,et al.  Regression modeling of welded joint quality in gas metal arc welding process using acoustic and electrical signals , 2015 .

[135]  Nanda Naik Korra,et al.  Optimization of activated tungsten inert gas welding of super duplex alloy 2507 based on experimental results , 2015 .

[136]  Yupiter Harangan Prasada Manurung,et al.  Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology , 2015 .

[137]  Sudipto Chaki,et al.  Application of integrated soft computing techniques for optimisation of hybrid CO2 laser-MIG welding process , 2015, Appl. Soft Comput..

[138]  Wenhua Chen,et al.  The dissimilar friction stir lap welding of 1A99 Al to pure Cu using Zn as filler metal with “pinless” tool configuration , 2015 .

[139]  Nanda Naik Korra,et al.  Multi-objective optimization of activated tungsten inert gas welding of duplex stainless steel using response surface methodology , 2015 .

[140]  Y. Javadi Investigation of clamping effect on the welding residual stress and deformation of monel plates by using the ultrasonic stress measurement and finite element method , 2015 .

[141]  Carlos Enrique Niño Bohórquez,et al.  Ultrasound in arc welding: a review. , 2015, Ultrasonics.

[142]  N. Harikannan,et al.  Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds , 2014 .

[143]  M. Shamil Jaffarullah,et al.  Temperature Distribution in Friction Stir Welding Using Finite Element Method , 2014 .

[144]  Andrew Ball,et al.  A review of numerical analysis of friction stir welding , 2014 .

[145]  Fadi Al-Badour,et al.  Thermo-mechanical finite element model of friction stir welding of dissimilar alloys , 2014 .

[146]  M. Aghaie-Khafri,et al.  Optimization of gas tungsten arc welding process by response surface methodology , 2014 .

[147]  S. Chatterjee,et al.  Structure and properties of solid state diffusion bonding of 17-4PH stainless steel and titanium , 2014 .

[148]  Junfeng Guo Solid State Welding Processes in Manufacturing , 2014 .

[149]  T. Jayakumar,et al.  Modeling, Prediction and Validation of Thermal Cycles, Residual Stresses and Distortion in Type 316 LN Stainless Steel Weld Joint made by TIG Welding Process☆ , 2014 .

[150]  N. D. Ghetiya,et al.  Prediction of Tensile Strength in Friction Stir Welded Aluminium Alloy Using Artificial Neural Network , 2014 .

[151]  R. Siddharth,et al.  Parameter Optimization of Friction Stir Welding Of AA8011-6062 Using Mathematical Method , 2014 .

[152]  Surjya K. Pal,et al.  Multi Objective Optimization of Friction Stir Welding Parameters for Joining of Two Dissimilar Thin Aluminum Sheets , 2014 .

[153]  Vinayak R. Malik,et al.  Investigations on the Effect of Various Tool Pin Profiles in Friction Stir Welding Using Finite Element Simulations , 2014 .

[154]  Tapan Kumar Pal,et al.  Prediction Of Weld Bead Geometry For Double Pulse Gas Metal Arc Welding Process By Regression Analysis , 2014 .

[155]  Yashar Javadi,et al.  Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates , 2013, Materials & Design (1980-2015).

[156]  E. Hajjari,et al.  Dissimilar joining of AISI 304L/St37 steels by TIG welding process , 2013, Acta Metallurgica Sinica (English Letters).

[157]  L. Fratini,et al.  FEM based prediction of phase transformations during Friction Stir Welding of Ti6Al4V titanium alloy , 2013 .

[158]  S. Natarajan,et al.  Optimization of GMAW process parameters in austenitic stainless steel cladding using genetic algorithm based computational models , 2013, Experimental Techniques.

[159]  Hamed Pashazadeh,et al.  A study on material flow pattern in friction stir welding using finite element method , 2013 .

[160]  A. Bazoune,et al.  Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes , 2013 .

[161]  R. Ferreira,et al.  Determination of Residual Stresses Numerically Obtained in ASTM AH36 Steel Welded by TIG Process , 2013 .

[162]  Huijie Liu,et al.  Mathematical model and optimization for underwater friction stir welding of a heat-treatable aluminum alloy , 2013 .

[163]  Mustafa Aydin,et al.  Investigations of friction stir welding process using finite element method , 2013 .

[164]  Christopher M. Bishop,et al.  Model-based machine learning , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[165]  Mostafa Akbari,et al.  Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm , 2013 .

[166]  M. R. Suresh,et al.  Recent developments in modeling of heat transfer during TIG welding—a review , 2012, The International Journal of Advanced Manufacturing Technology.

[167]  V. S. Kumar,et al.  An experimental analysis and optimization of process parameter on friction stir welding of AA 6061-T6 aluminum alloy using RSM , 2013 .

[168]  M. Koilraj,et al.  Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083 – Optimization of process parameters using Taguchi technique , 2012 .

[169]  V. Balasubramanian,et al.  Prediction and optimization of pulsed current tungsten inert gas welding parameters to attain maximum tensile strength in AZ61A magnesium alloy , 2012 .

[170]  Yahya Bozkurt,et al.  The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets , 2012 .

[171]  Sung-Soo Kang,et al.  Investigations on welding residual stress and distortion in a cylinder assembly by means of a 3D finite element method and experiments , 2011 .

[172]  Kamal Pal,et al.  Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review , 2011 .

[173]  Jianxun Zhang,et al.  Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes , 2011 .

[174]  S.A.A. Akbarimousavi,et al.  Investigations on the mechanical properties and microstructure of dissimilar cp-titanium and AISI 316L austenitic stainless steel continuous friction welds , 2011 .

[175]  Livan Fratini,et al.  Numerical procedure for residual stresses prediction in friction stir welding , 2011 .

[176]  Yih-fong Tzeng,et al.  Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate , 2011 .

[177]  Alberto Cardona,et al.  Finite element modeling of welding processes , 2011 .

[178]  P. J. García Nieto,et al.  Comparative analysis of TIG welding distortions between austenitic and duplex stainless steels by FEM , 2010 .

[179]  Kwon-Hee Lee,et al.  Metamodel-based optimization of a control arm considering strength and durability performance , 2010, Comput. Math. Appl..

[180]  G. L. Datta,et al.  Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process , 2010, Appl. Soft Comput..

[181]  Chun Xu,et al.  Coupled finite element analysis of MIG welding assembly on auto-body high-strength steel panel and door hinge , 2010 .

[182]  Yan-bin Chen,et al.  Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding–brazing , 2010 .

[183]  Tomotake Hirata,et al.  Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys , 2009 .

[184]  O. P. Gupta,et al.  Effect of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding , 2009 .

[185]  A. Short Gas tungsten arc welding of α + β titanium alloys: a review , 2009 .

[186]  D. Deng FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects , 2009 .

[187]  Noel P. O’Dowd,et al.  Thermo-mechanical modelling of a single-bead-on-plate weld using the finite element method , 2009 .

[188]  V. Balasubramanian,et al.  Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model , 2009 .

[189]  H. Bhadeshia,et al.  Recent advances in friction-stir welding : Process, weldment structure and properties , 2008 .

[190]  A. De,et al.  Development of a Three-Dimensional Heat-Transfer Model for the Gas Tungsten Arc Welding Process Using the Finite Element Method Coupled with a Genetic Algorithm–Based Identification of Uncertain Input Parameters , 2008 .

[191]  Surjya K. Pal,et al.  Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals , 2008 .

[192]  D. K. Pratihar,et al.  Modeling of the MIG welding process using statistical approaches , 2008 .

[193]  Pavan Kocherlakota,et al.  Effect of Welding Conditions on TIG Welded AISI 304 Stainless Steels Using FEM and Experimental Methods , 2008 .

[194]  Dilip Kumar Pratihar,et al.  Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process , 2007 .

[195]  E. Karadeniz,et al.  The effect of process parameters on penetration in gas metal arc welding processes , 2007 .

[196]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.

[197]  R. Shiue,et al.  Infrared brazing of Ti-6Al-4V and 17-4 PH stainless steel with a nickel barrier layer , 2006 .

[198]  Livan Fratini,et al.  Design of the friction stir welding tool using the continuum based FEM model , 2006 .

[199]  N. Murugan,et al.  Development of mathematical models for prediction of weld bead geometry in cladding by flux cored arc welding , 2006 .

[200]  N. Ahmed,et al.  New developments in advanced welding , 2005 .

[201]  Carla Gambaro,et al.  Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel , 2005 .

[202]  J. Grum,et al.  The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni–Co–Mo surfaced layers , 2004 .

[203]  R Kovacevic,et al.  Thermomechanical modelling and force analysis of friction stir welding by the finite element method , 2004 .

[204]  Daniel Berglund,et al.  Comparison of plastic, viscoplastic, and creep models when modelling welding and stress relief heat treatment , 2003 .

[205]  Alberto Cardona,et al.  Constitutive models of steel under continuous casting conditions , 2003 .

[206]  T. Maruyama Arc welding technology for dissimilar joints , 2003 .

[207]  Mainak Ghosh,et al.  Characterization of transition joints of commercially pure titanium to 304 stainless steel , 2002 .

[208]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[209]  V. Gunaraj,et al.  Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes , 1999 .

[210]  Russell R. Barton,et al.  Metamodeling: a state of the art review , 1994, Proceedings of Winter Simulation Conference.

[211]  W. M. Thomas,et al.  Friction Stir Butt Welding , 1991 .

[212]  H. Kato,et al.  Diffusion welding of Ti/Ti and Ti/stainless steel rods under phase transformation in air , 1986 .

[213]  John Lancaster,et al.  The Physics of Welding , 1984 .

[214]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[215]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .