Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML - Part I: Overview and Key Issues

Cesium Markup Language (CZML) is an emerging specification for the representation and exchange of time-dynamic geospatial objects on virtual globes. The principal focus of CZML is on the definition of time-varying characteristics that are important for applications of geospatial objects, such as changeable positions/extents, graphical appearances, and other geospatial properties. Due to its unique ability to stream massive geospatial datasets, CZML is ideally suited for efficient, incremental streaming to the client in the network environment. Our goal is to explore and outline the overall perspective of CZML as an efficient schema for representing time-dynamic geospatial objects on virtual globes. Such a perspective is the topic of the two present companion papers. Here, in the first part, we provide an overview of CZML and explore two key issues, and their associated solutions, for representing time-dynamic geospatial objects using CZML: one is how to use CZML properties to describe time-varying characteristics of geospatial objects, and the other is how to use CZML to support streaming data. These innovative improvements provide highly-efficient and more reliable supports for representing time-dynamic geospatial objects. The relevant applications, academic influence, and future developments of CZML are explored in a second paper.

[1]  Xin Pan,et al.  Visualization and dissemination of global crustal models on virtual globes , 2016, Comput. Geosci..

[2]  The Fold Analysis Challenge: A virtual globe-based educational resource , 2016 .

[3]  Huadong Guo,et al.  Next-generation Digital Earth , 2012, Proceedings of the National Academy of Sciences.

[4]  Ali Mahdavi-Amiri,et al.  A Survey of Digital Earth , 2015, Comput. Graph..

[5]  이영식 Communication 으로서의 영어교육 , 1986 .

[6]  Andrea Morelli,et al.  Standardization of seismic tomographic models and earthquake focal mechanisms data sets based on web technologies, visualization with keyhole markup language , 2011, Comput. Geosci..

[7]  Yu Zhang,et al.  Visualizing the Structure of the Earth's Lithosphere on the Google Earth Virtual-Globe Platform , 2016, ISPRS Int. J. Geo Inf..

[8]  Bernd Hamann,et al.  Crusta: A new virtual globe for real-time visualization of sub-meter digital topography at planetary scales , 2011, Comput. Geosci..

[9]  Patrick Cozzi,et al.  3D Engine Design for Virtual Globes , 2011 .

[10]  Michael J. McGuffin,et al.  The Impact of Interactivity on Comprehending 2D and 3D Visualizations of Movement Data , 2015, IEEE Transactions on Visualization and Computer Graphics.

[11]  Jianhua Gong,et al.  Visualizing and analyzing dynamic meteorological data with virtual globes: A case study of tropical cyclones , 2015, Environ. Model. Softw..

[12]  Anna M. Michalak,et al.  A Data System for Visualizing 4-D Atmospheric CO2 Models and Data , 2010 .

[13]  Bing Zhang,et al.  Coupled modeling between geological structure fields and property parameter fields in 3D engineering geological space , 2013 .

[14]  Dirk Tiede,et al.  Analytical 3D views and virtual globes - scientific results in a familiar spatial context , 2010 .

[15]  Le Yu,et al.  Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives , 2012 .

[16]  Tania Mochales,et al.  Representation of paleomagnetic data in virtual globes: A case study from the Pyrenees , 2014, Comput. Geosci..

[17]  Jianya Gong,et al.  A virtual globe-based 3D visualization and interactive framework for public participation in urban planning processes , 2010, Comput. Environ. Urban Syst..

[18]  Gilberto Câmara,et al.  MOVING OBJECTS AND SPATIAL DATA SOURCES , 2012 .

[19]  Eugene Potapov,et al.  Extreme dynamic mapping: Animals map themselves on the “Cloud” , 2012 .

[20]  Jianhua Gong,et al.  Visualizing 3D atmospheric data with spherical volume texture on virtual globes , 2014, Comput. Geosci..

[21]  Brian M. Tomaszewski Situation awareness and virtual globes: Applications for disaster management , 2011, Comput. Geosci..

[22]  Soon Keat Tan,et al.  Google Earth as a tool in 2-D hydrodynamic modeling , 2011, Comput. Geosci..

[23]  Travis M. Smith,et al.  Real-time, rapidly updating severe weather products for virtual globes , 2011, Comput. Geosci..

[24]  Yansen Wang,et al.  Integration of Google Maps/Earth with microscale meteorology models and data visualization , 2013, Comput. Geosci..

[25]  Seiji Tsuboi,et al.  Visualization of geochemical data for rocks and sediments in Google Earth: Development of a data converter application for geochemical and isotopic data sets in database systems , 2011 .

[26]  Yi Zheng,et al.  Development of a visualization tool for integrated surface water-groundwater modeling , 2016, Comput. Geosci..

[27]  Steven J. Whitmeyer,et al.  Exploring the reasons for the seasons using Google Earth, 3D models, and plots , 2017, Int. J. Digit. Earth.

[28]  Richard M. Teeuw,et al.  Free software: A review, in the context of disaster management , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[29]  Olaf Schroth,et al.  Tool or Toy? Virtual Globes in Landscape Planning , 2011, Future Internet.

[30]  Liangfeng Zhu,et al.  Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML - Part II: Impact, Comparison, and Future Developments , 2018, ISPRS Int. J. Geo Inf..

[31]  Mladen M. Dordevic,et al.  Emergent and animated COLLADA models of the Tonga Trench and Samoa Archipelago: Implications for geoscience modeling, education, and research , 2012 .

[32]  Laura Guertin,et al.  Building an education game with the Google Earth application programming interface to enhance geographic literacy , 2012 .

[33]  Hiromichi Nagao,et al.  Visualization of geoscience data on Google Earth: Development of a data converter system for seismic tomographic models , 2010, Comput. Geosci..

[34]  Jianzhong Sun,et al.  SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space , 2014, Frontiers of Earth Science.

[35]  Rui Li,et al.  4D-SAS: A Distributed Dynamic-Data Driven Simulation and Analysis System for Massive Spatial Agent-Based Modeling , 2016, ISPRS Int. J. Geo Inf..

[36]  Gilberto Câmara,et al.  Moving Objects and KML Files , 2012, 2012 IEEE 28th International Conference on Data Engineering Workshops.

[37]  Steven J. Whitmeyer,et al.  Geological and geophysical modeling on virtual globes using KML, COLLADA, and Javascript , 2011, Comput. Geosci..

[38]  E. Habib,et al.  Development of a web-based hydrologic education tool using Google Earth resources , 2012 .

[39]  Thomas Blaschke,et al.  Virtual Globes: Serving Science and Society , 2012, Inf..

[40]  Sara Irina Fabrikant,et al.  Geovisualization of Dynamics, Movement and Change: Key Issues and Developing Approaches in Visualization Research , 2008, Inf. Vis..

[41]  Thomas H. Kolbe,et al.  Dynamizers - Modeling and Implementing Dynamic Properties for Semantic 3D City Models , 2015, UDMV.

[42]  Maria Seton,et al.  The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser , 2016, PloS one.

[43]  Aijun Chen,et al.  Visualization of A-Train vertical profiles using Google Earth , 2009, Comput. Geosci..

[44]  M. J. Heavner,et al.  SEAMONSTER: A demonstration sensor web operating in virtual globes , 2011, Comput. Geosci..

[45]  Liang-feng Zhu,et al.  Building 3D solid models of sedimentary stratigraphic systems from borehole data: An automatic method and case studies , 2012 .

[46]  Steven J. Whitmeyer,et al.  MaRGEE: Move and Rotate Google Earth Elements , 2015, Comput. Geosci..

[47]  Gen-Tao Chiang,et al.  Geo-visualization Fortran library , 2011, Comput. Geosci..

[48]  Bing Zhang,et al.  Modeling and visualizing borehole information on virtual globes using KML , 2014, Comput. Geosci..

[49]  Ruth E. Duerr,et al.  Representing scientific data sets in KML: Methods and challenges , 2011, Comput. Geosci..

[50]  Yuan-Ko Huang,et al.  Within Skyline Query Processing in Dynamic Road Networks , 2017, ISPRS Int. J. Geo Inf..

[51]  Huadong Guo,et al.  Vertical accuracy assessment of freely available digital elevation models over low-lying coastal plains , 2016, Int. J. Digit. Earth.

[52]  Liang-feng Zhu,et al.  Assessing Place Location Knowledge Using a Virtual Globe , 2016 .

[53]  Sara Saeedi,et al.  Overview of the OGC CDB Standard for 3D Synthetic Environment Modeling and Simulation , 2017, ISPRS Int. J. Geo Inf..

[54]  Xin Pan,et al.  Moving KML geometry elements within Google Earth , 2014, Comput. Geosci..

[55]  Josie Wernecke The KML Handbook: Geographic Visualization for the Web , 2008 .

[56]  Aijun Chen,et al.  The role of Virtual Globes in geoscience , 2011, Comput. Geosci..