Visualization of translation and protein biogenesis at the ER membrane

[1]  R. Hegde,et al.  Mechanism of an intramembrane chaperone for multipass membrane proteins , 2022, Nature.

[2]  R. Hegde,et al.  Substrate-driven assembly of a translocon for multipass membrane proteins , 2022, Nature.

[3]  A. Brazma,et al.  The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences , 2021, Nucleic Acids Res..

[4]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[5]  P. Bork,et al.  Visualizing translation dynamics at atomic detail inside a bacterial cell , 2021, bioRxiv.

[6]  D. Hassabis,et al.  Protein complex prediction with AlphaFold-Multimer , 2021, bioRxiv.

[7]  R. Hegde,et al.  The mechanisms of integral membrane protein biogenesis , 2021, Nature Reviews Molecular Cell Biology.

[8]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[9]  D. Tegunov,et al.  Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells , 2020, Nature Methods.

[10]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[11]  J. Gumbart,et al.  Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62 , 2020, bioRxiv.

[12]  R. Hegde,et al.  An intramembrane chaperone complex facilitates membrane protein biogenesis , 2020, Nature.

[13]  T. Hessa,et al.  Prion Protein Translocation Mechanism Revealed by Pulling Force Studies. , 2020, Journal of molecular biology.

[14]  A. Korostelev,et al.  Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading , 2020, Nature.

[15]  W. Gilbert,et al.  Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes , 2020, bioRxiv.

[16]  I. Sinning,et al.  MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments , 2020, Nature Communications.

[17]  Karissa Y. Sanbonmatsu,et al.  Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection , 2020, Proceedings of the National Academy of Sciences.

[18]  F. Förster,et al.  A clearer picture of the ER translocon complex , 2020, Journal of Cell Science.

[19]  Julia Kowal,et al.  Cryo–electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B , 2019, Science.

[20]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[21]  Dimitry Tegunov,et al.  Real-time cryo–EM data pre-processing with Warp , 2018, Nature Methods.

[22]  T. Mielke,et al.  tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis , 2018, Cell reports.

[23]  F. Förster,et al.  Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import , 2018, Nature Communications.

[24]  F. Förster,et al.  Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum , 2018, Science.

[25]  Tristan Ian Croll,et al.  ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps , 2018, Acta crystallographica. Section D, Structural biology.

[26]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[27]  Friedrich Förster,et al.  Dissecting the molecular organization of the translocon-associated protein complex , 2017, Nature Communications.

[28]  J. Briggs,et al.  Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging , 2017, Journal of structural biology.

[29]  J. Taunton,et al.  Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes , 2016, Cell.

[30]  M. Ehrenberg,et al.  Two proofreading steps amplify the accuracy of genetic code translation , 2016, Proceedings of the National Academy of Sciences.

[31]  R. Hegde,et al.  Toward a structural understanding of co-translational protein translocation. , 2016, Current opinion in cell biology.

[32]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[33]  Scott C. Blanchard,et al.  Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation , 2016, Nature Structural &Molecular Biology.

[34]  Hidde Ploegh,et al.  Crystal structure of a substrate-engaged SecY protein-translocation channel , 2016, Nature.

[35]  R. Hegde,et al.  Structure of the Sec61 channel opened by a signal sequence , 2016, Science.

[36]  F. Förster,et al.  Structure of the native Sec61 protein-conducting channel , 2015, Nature Communications.

[37]  P. Penczek,et al.  Structural Snapshots of Actively Translating Human Ribosomes , 2015, Cell.

[38]  A. El'skaya,et al.  Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes , 2014, Nucleic acids research.

[39]  O. Uhlenbeck,et al.  Labeled EF-Tus for Rapid Kinetic Studies of Pretranslocation Complex Formation , 2014, ACS chemical biology.

[40]  T. Mielke,et al.  Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement , 2014, Cell.

[41]  R. Glockshuber,et al.  Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. , 2014, Structure.

[42]  Friedrich Förster,et al.  Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon , 2014, Nature Communications.

[43]  T. Gidalevitz,et al.  Orchestration of secretory protein folding by ER chaperones. , 2013, Biochimica et biophysica acta.

[44]  Markus Aebi,et al.  N-linked protein glycosylation in the ER. , 2013, Biochimica et biophysica acta.

[45]  Pablo Chacón,et al.  iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates. , 2013, Journal of structural biology.

[46]  V. Ramakrishnan,et al.  Structural basis of the translational elongation cycle. , 2013, Annual review of biochemistry.

[47]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[48]  F. Förster,et al.  Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes. , 2012, Structure.

[49]  D. Ron,et al.  New insights into translational regulation in the endoplasmic reticulum unfolded protein response. , 2012, Cold Spring Harbor perspectives in biology.

[50]  Nassir Navab,et al.  Detection and identification of macromolecular complexes in cryo-electron tomograms using support vector machines , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[51]  Yuxiang Chen,et al.  PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. , 2012, Journal of structural biology.

[52]  R. Stroud,et al.  Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes , 2010, Proceedings of the National Academy of Sciences.

[53]  Wolfgang Baumeister,et al.  The three-dimensional organization of polyribosomes in intact human cells. , 2010, Molecular cell.

[54]  Martin Elff Social divisions, party positions, and electoral behaviour , 2009 .

[55]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[56]  T. Rapoport,et al.  Structure of a complex of the ATPase SecA and the protein-translocation channel , 2008, Nature.

[57]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.

[58]  Hermann Schindelin,et al.  The Crystal Structure of Yeast Protein Disulfide Isomerase Suggests Cooperativity between Its Active Sites , 2006, Cell.

[59]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[60]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[61]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[62]  R. Hegde,et al.  Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane , 2003, The Journal of cell biology.

[63]  R. Riek,et al.  TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  S. High,et al.  ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. , 1999, Molecular biology of the cell.

[65]  M. R. Parsons,et al.  Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 A resolution. , 1999, Journal of molecular biology.

[66]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[67]  T. Rapoport,et al.  Photocrosslinking demonstrates proximity of a 34 kDa membrane protein to different portions of preprolactin during translocation through the endoplasmic reticulum , 1989, FEBS letters.