Complexity of inverting the Euler function
暂无分享,去创建一个
[1] Carl Pomerance,et al. POPULAR VALUES OF EULER'S FUNCTION , 1980 .
[2] C. Pomerance,et al. There are infinitely many Carmichael numbers , 1994 .
[3] Values of the Euler Function in Various Sequences , 2005 .
[4] K. Ford,et al. The Number of Solutions of φ (x) = m , 1999 .
[5] H. W. Lenstra,et al. Factoring integers with elliptic curves , 1987 .
[6] W. Bosma. Some computational experiments in number theory , 2006 .
[7] Paul Erdös,et al. On the normal number of prime factors of p-1 and some related problems concerning euler's o/-function , 1935 .
[8] P. Erdös,et al. On the normal number of prime factors of $\phi(n)$ , 1985 .
[9] Gary L. Miller. Riemann's Hypothesis and Tests for Primality , 1976, J. Comput. Syst. Sci..
[10] C. Pomerance,et al. A hyperelliptic smoothness test. I , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[11] Glyn Harman,et al. Shifted primes without large prime factors , 1998 .
[12] C. Pomerance,et al. Prime Numbers: A Computational Perspective , 2002 .
[13] Antal Balog,et al. The Prime k-Tuplets Conjecture on Average , 1990 .
[14] G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory , 1995 .
[15] Manindra Agrawal,et al. PRIMES is in P , 2004 .
[16] Igor E. Shparlinski,et al. Multiplicative Structure of Values of the Euler Function , 2004 .
[17] C. Pomerance,et al. Residue classes free of values of Euler's function , 2020, 2005.01078.
[18] P. Bateman. The distribution of values of the Euler function , 1972 .
[19] Kevin Ford. The number of solutions of . , 1999 .
[20] Gérald Tenenbaum,et al. Introduction à la théorie analytique et probabiliste des nombres , 1990 .