A unifying framework for multi-target tracking and existence
暂无分享,去创建一个
J. Vermaak | M. Briers | S. Maskell | M. Briers | S. Maskell | J. Vermaak
[1] S. Godsill,et al. Monte Carlo filtering for multi target tracking and data association , 2005, IEEE Transactions on Aerospace and Electronic Systems.
[2] David J. Salmond. Mixture reduction algorithms for target tracking in clutter , 1990 .
[3] D. Salmond,et al. A particle filter for track-before-detect of a target with unknown amplitude , 2001 .
[4] Simon Maskell,et al. Fast mutual exclusion , 2004, SPIE Defense + Commercial Sensing.
[5] Yaakov Bar-Shalom,et al. Sonar tracking of multiple targets using joint probabilistic data association , 1983 .
[6] Dorin Comaniciu,et al. Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).
[7] Thia Kirubarajan,et al. Probabilistic data association techniques for target tracking in clutter , 2004, Proceedings of the IEEE.
[8] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[9] Darko Musicki,et al. Joint Integrated Probabilistic Data Association - JIPDA , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).
[10] Neil J. Gordon,et al. Editors: Sequential Monte Carlo Methods in Practice , 2001 .
[11] Robin J. Evans,et al. Integrated probabilistic data association , 1994, IEEE Trans. Autom. Control..
[12] Jeffrey K. Uhlmann,et al. New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.
[13] Y. Bar-Shalom. Tracking and data association , 1988 .