Efficient implementation of unitary transformations

Quantum computation and quantum control operate by building unitary transformations out of sequences of elementary quantum logic operations or applications of control fields. This paper puts upper bounds on the minimum time required to implement a desired unitary transformation on a d-dimensional Hilbert space when applying sequences of Hamiltonian transformations. We show that strategies of building up a desired unitary out of non-infinitesimal and infinitesimal unitaries, or equivalently, using power and band limited controls, can yield the best possible scaling in time $O(d^2)$.

[1]  Andrew Steane,et al.  Fast quantum logic gates with trapped-ion qubits , 2017, Nature.

[2]  M. Rangamani,et al.  Classification of out-of-time-order correlators , 2017, SciPost Physics.

[3]  Herschel Rabitz,et al.  Quantum control by von Neumann measurements , 2006 .

[4]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[5]  M. Hafezi,et al.  Measurement of many-body chaos using a quantum clock , 2016, 1607.00079.

[6]  Dominique Perrin,et al.  The origins of combinatorics on words , 2007, Eur. J. Comb..

[7]  Andrew M. Childs,et al.  Simulating Sparse Hamiltonians with Star Decompositions , 2010, TQC.

[8]  Nathan Wiebe,et al.  Hamiltonian Simulation in the Interaction Picture , 2018, 1805.00675.

[9]  J. P. Home,et al.  Realization of a programmable two-qubit quantum processor , 2009, 0908.3031.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[12]  J. Gomis,et al.  On free Lie algebras and particles in electro-magnetic fields , 2017, 1705.05854.

[13]  Yuan Su,et al.  Nearly optimal lattice simulation by product formulas , 2019, Physical review letters.

[14]  Nathan Wiebe,et al.  Product formulas for exponentials of commutators , 2012, 1211.4945.

[15]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[16]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[17]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[18]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[19]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[20]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[21]  Fu-Guo Deng,et al.  Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities , 2013, 1302.0046.

[22]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[23]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[24]  Maris Ozols,et al.  Trading Inverses for an Irrep in the Solovay-Kitaev Theorem , 2017, TQC.

[25]  Lorenza Viola,et al.  Engineering quantum dynamics , 2001 .

[26]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[27]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[28]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[29]  S Montangero,et al.  Information theoretical analysis of quantum optimal control. , 2014, Physical review letters.

[30]  Yuan Su,et al.  Faster quantum simulation by randomization , 2018, Quantum.

[31]  Seth Lloyd,et al.  Universal Quantum Emulator , 2016, 1606.02734.

[32]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[33]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[34]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[35]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[36]  E. Witt,et al.  Die Unterringe der freien Lieschen Ringe , 1956 .

[37]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[38]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[39]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[40]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[41]  R. Feynman Simulating physics with computers , 1999 .

[42]  Franco Nori,et al.  Quantum feedback: theory, experiments, and applications , 2014, 1407.8536.

[43]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[44]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[45]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[46]  Jeongwan Haah,et al.  Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[47]  Peter van Loock,et al.  How to decompose arbitrary continuous-variable quantum operations. , 2010, Physical review letters.

[48]  Aram W. Harrow,et al.  Universal Refocusing of Systematic Quantum Noise , 2016, 1602.07963.

[49]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[50]  Mikko Möttönen,et al.  Quantum circuits for general multiqubit gates. , 2004, Physical review letters.

[51]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[52]  Herschel Rabitz,et al.  Landscape of unitary transformations in controlled quantum dynamics , 2009 .