Molecular signals of plasticity at the tetrapartite synapse

[1]  Alfredo Pereira,et al.  Astrocytes and human cognition: Modeling information integration and modulation of neuronal activity , 2010, Progress in Neurobiology.

[2]  Melitta Schachner,et al.  Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain , 2010, Trends in Neurosciences.

[3]  Peter Sonderegger,et al.  The dual role of the extracellular matrix in synaptic plasticity and homeostasis , 2010, Nature Reviews Neuroscience.

[4]  A. Triller,et al.  A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses , 2010, Nature Neuroscience.

[5]  A. Araque,et al.  Endocannabinoids Potentiate Synaptic Transmission through Stimulation of Astrocytes , 2010, Neuron.

[6]  Richard Robitaille,et al.  Perisynaptic Glia Discriminate Patterns of Motor Nerve Activity and Influence Plasticity at the Neuromuscular Junction , 2010, The Journal of Neuroscience.

[7]  J. Fawcett,et al.  Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. , 2010, Brain : a journal of neurology.

[8]  K. Deisseroth,et al.  Astrocytes Control Breathing Through pH-Dependent Release of ATP , 2010, Science.

[9]  D. Rusakov,et al.  Slow GABA Transient and Receptor Desensitization Shape Synaptic Responses Evoked by Hippocampal Neurogliaform Cells , 2010, The Journal of Neuroscience.

[10]  A. Engel,et al.  The Extracellular Matrix Molecule Hyaluronic Acid Regulates Hippocampal Synaptic Plasticity by Modulating Postsynaptic L-Type Ca2+ Channels , 2010, Neuron.

[11]  E. Gundelfinger,et al.  Converting juvenile into adult plasticity: a role for the brain’s extracellular matrix , 2010, The European journal of neuroscience.

[12]  E. Gundelfinger,et al.  Contributions of astrocytes to synapse formation and maturation — Potential functions of the perisynaptic extracellular matrix , 2010, Brain Research Reviews.

[13]  R. Nicoll,et al.  Disruption of LGI1–linked synaptic complex causes abnormal synaptic transmission and epilepsy , 2010, Proceedings of the National Academy of Sciences.

[14]  S. Oliet,et al.  Long term potentiation depends on release of D-serine from astrocytes , 2009, Nature.

[15]  Stephen J. Smith,et al.  Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis , 2009, Cell.

[16]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[17]  D. Muller,et al.  Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus , 2009, Hippocampus.

[18]  Megan R. Carey,et al.  Activity-Dependent Regulation of Synapses by Retrograde Messengers , 2009, Neuron.

[19]  Gary Lynch,et al.  Different Rho GTPase–dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation , 2009, The Journal of cell biology.

[20]  D. Perrais,et al.  Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity , 2009, Nature Neuroscience.

[21]  L. Kaczmarek,et al.  Matrix Metalloproteinase-9 Controls NMDA Receptor Surface Diffusion through Integrin β1 Signaling , 2009, The Journal of Neuroscience.

[22]  U. Gerber,et al.  Coincident Pre- and Postsynaptic Activation Induces Dendritic Filopodia via Neurotrypsin-Dependent Agrin Cleavage , 2009, Cell.

[23]  Michael M. Halassa,et al.  Astrocytic Modulation of Sleep Homeostasis and Cognitive Consequences of Sleep Loss , 2009, Neuron.

[24]  Todd A Fiacco,et al.  What Is the Role of Astrocyte Calcium in Neurophysiology? , 2008, Neuron.

[25]  T. Fellin,et al.  Extracellular matrix in plasticity and epileptogenesis. , 2008, Neuron glia biology.

[26]  S. Oliet,et al.  Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. , 2008, Physiological reviews.

[27]  Y. Goda,et al.  Activity-Dependent Regulation of Synaptic AMPA Receptor Composition and Abundance by β3 Integrins , 2008, Neuron.

[28]  A. Araque,et al.  Endocannabinoids Mediate Neuron-Astrocyte Communication , 2008, Neuron.

[29]  P. Sonderegger,et al.  Activity-Induced Synaptic Capture and Exocytosis of the Neuronal Serine Protease Neurotrypsin , 2008, The Journal of Neuroscience.

[30]  Robert J Richardson,et al.  Slow Presynaptic and Fast Postsynaptic Components of Compound Long-Term Potentiation , 2007, The Journal of Neuroscience.

[31]  C. Jahr,et al.  Extracellular Glutamate Concentration in Hippocampal Slice , 2007, The Journal of Neuroscience.

[32]  S. Cullheim,et al.  The microglial networks of the brain and their role in neuronal network plasticity after lesion , 2007, Brain Research Reviews.

[33]  F. Kirchhoff,et al.  Glutamate‐mediated neuronal–glial transmission , 2007, Journal of anatomy.

[34]  James W. Fawcett,et al.  The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system , 2007, Brain Research Reviews.

[35]  Melitta Schachner,et al.  Activity‐dependent formation and functions of chondroitin sulfate‐rich extracellular matrix of perineuronal nets , 2007, Developmental neurobiology.

[36]  Khaleel Bhaukaurally,et al.  Glutamate exocytosis from astrocytes controls synaptic strength , 2007, Nature Neuroscience.

[37]  J. Herz,et al.  Reelin, lipoprotein receptors and synaptic plasticity , 2006, Nature Reviews Neuroscience.

[38]  S. Oliet,et al.  Glia-Derived d-Serine Controls NMDA Receptor Activity and Synaptic Memory , 2006, Cell.

[39]  J. Lacaille,et al.  GABAergic Network Activation of Glial Cells Underlies Hippocampal Heterosynaptic Depression , 2006, The Journal of Neuroscience.

[40]  G. Lynch,et al.  Integrin-driven actin polymerization consolidates long-term potentiation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-α , 2006, Nature.

[42]  Piergiorgio Strata,et al.  Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components , 2006, The Journal of comparative neurology.

[43]  Cathryn L. Kubera,et al.  Astrocytic Purinergic Signaling Coordinates Synaptic Networks , 2005, Science.

[44]  C. Jahr,et al.  High-Concentration Rapid Transients of Glutamate Mediate Neural-Glial Communication via Ectopic Release , 2005, The Journal of Neuroscience.

[45]  J. Hell,et al.  Thrombospondins Are Astrocyte-Secreted Proteins that Promote CNS Synaptogenesis , 2005, Cell.

[46]  E. Newman Glial modulation of synaptic transmission in the retina , 2004, Glia.

[47]  Dwight E Bergles,et al.  Glutamate transporters bring competition to the synapse , 2004, Current Opinion in Neurobiology.

[48]  D. Kullmann,et al.  NR2B-Containing Receptors Mediate Cross Talk among Hippocampal Synapses , 2004, The Journal of Neuroscience.

[49]  M. Poo,et al.  Contribution of astrocytes to hippocampal long-term potentiation through release of d-serine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Snapyan,et al.  Recognition molecule associated carbohydrate inhibits postsynaptic GABAB receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses , 2003, Molecular and Cellular Neuroscience.

[51]  E. Kandel,et al.  Presynaptic BDNF Required for a Presynaptic but Not Postsynaptic Component of LTP at Hippocampal CA1-CA3 Synapses , 2003, Neuron.

[52]  T. Freund,et al.  Role of endogenous cannabinoids in synaptic signaling. , 2003, Physiological reviews.

[53]  M. Schachner,et al.  Extracellular matrix molecules and synaptic plasticity , 2003, Nature Reviews Neuroscience.

[54]  F. Asztély,et al.  Brevican-Deficient Mice Display Impaired Hippocampal CA1 Long-Term Potentiation but Show No Obvious Deficits in Learning and Memory , 2002, Molecular and Cellular Biology.

[55]  M. Schachner,et al.  Impairment of L-type Ca2+ Channel-Dependent Forms of Hippocampal Synaptic Plasticity in Mice Deficient in the Extracellular Matrix Glycoprotein Tenascin-C , 2002, The Journal of Neuroscience.

[56]  D. Rusakov,et al.  Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. , 2002, Biophysical journal.

[57]  James M. Robertson The Astrocentric Hypothesis: proposed role of astrocytes in consciousness and memory formation , 2002, Journal of Physiology-Paris.

[58]  D. Poulain,et al.  Neuronal–glial remodeling: a structural basis for neuronal–glial interactions in the adult hypothalamus , 2002, Journal of Physiology-Paris.

[59]  M. Scanziani,et al.  Cooperation between independent hippocampal synapses is controlled by glutamate uptake , 2002, Nature Neuroscience.

[60]  J. Diamond Neuronal Glutamate Transporters Limit Activation of NMDA Receptors by Neurotransmitter Spillover on CA1 Pyramidal Cells , 2001, The Journal of Neuroscience.

[61]  J. Sanes,et al.  Induction, assembly, maturation and maintenance of a postsynaptic apparatus , 2001, Nature reviews. Neuroscience.

[62]  J. Duncan,et al.  An adaptive coding model of neural function in prefrontal cortex , 2001, Nature Reviews Neuroscience.

[63]  N. Danbolt Glutamate uptake , 2001, Progress in Neurobiology.

[64]  George Kunos,et al.  Presynaptic Specificity of Endocannabinoid Signaling in the Hippocampus , 2001, Neuron.

[65]  H. Kettenmann,et al.  Astrocytes of the mouse neocortex express functional N‐methyl‐D‐aspartate receptors , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[66]  D. Linden,et al.  D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Y. Yamaguchi,et al.  Lecticans: organizers of the brain extracellular matrix , 2000, Cellular and Molecular Life Sciences CMLS.

[68]  K. Harris,et al.  Three-Dimensional Relationships between Hippocampal Synapses and Astrocytes , 1999, The Journal of Neuroscience.

[69]  N. Lozovaya,et al.  Enhancement of glutamate release uncovers spillover-mediated transmission by N-methyl-d-aspartate receptors in the rat hippocampus , 1999, Neuroscience.

[70]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[71]  S. B. Kater,et al.  ATP Released from Astrocytes Mediates Glial Calcium Waves , 1999, The Journal of Neuroscience.

[72]  S. Goldman,et al.  Astrocyte-mediated potentiation of inhibitory synaptic transmission , 1998, Nature Neuroscience.

[73]  K. P. Lehre,et al.  The Number of Glutamate Transporter Subtype Molecules at Glutamatergic Synapses: Chemical and Stereological Quantification in Young Adult Rat Brain , 1998, The Journal of Neuroscience.

[74]  C. Jahr,et al.  Glial Contribution to Glutamate Uptake at Schaffer Collateral–Commissural Synapses in the Hippocampus , 1998, The Journal of Neuroscience.

[75]  J. Sanes,et al.  Synaptic laminin prevents glial entry into the synaptic cleft , 1998, Nature.

[76]  Tullio Pozzan,et al.  Prostaglandins stimulate calcium-dependent glutamate release in astrocytes , 1998, Nature.

[77]  S. Kirischuk,et al.  Na+/Ca2+ exchanger modulates kainate‐triggered Ca2+ signaling in Bergmann glial cells in situ , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[78]  D. Poulain,et al.  Expression of high levels of the extracellular matrix glycoprotein, tenascin‐C, in the normal adult hypothalamoneurohypophysial system , 1997 .

[79]  K. McCarthy,et al.  Hippocampal Astrocytes In Situ Respond to Glutamate Released from Synaptic Terminals , 1996, The Journal of Neuroscience.

[80]  J. Storm-Mathisen,et al.  Glutamate transporters in glial plasma membranes: Highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry , 1995, Neuron.

[81]  S. Snyder,et al.  D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[82]  P. Evans,et al.  N-methyl-D-aspartate (NMDA) and non-NMDA (metabotropic) type glutamate receptors modulate the membrane potential of the Schwann cell of the squid giant nerve fibre. , 1992, The Journal of experimental biology.

[83]  B. Sakmann,et al.  Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. , 1992, Science.

[84]  S. Finkbeiner,et al.  Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. , 1990, Science.

[85]  K. Harris,et al.  Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus , 2007, Glia.

[86]  Alexander E. Dityatev,et al.  Extracellular matrix and synaptic functions. , 2006, Results and problems in cell differentiation.

[87]  M. Graeber,et al.  Synaptic stripping in the human facial nucleus , 2004, Acta Neuropathologica.