Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function.

Single particle tracking is a powerful technique for investigating the dynamic behavior of biological molecules. However, many of the analytical tools are prone to generate results that can lead to mistaken interpretations of the underlying transport process. Here, we explore the effects of localization error and confinement on the velocity autocorrelation function, Cυ. We show that calculation of Cυ across a range of discretizations can distinguish the effects of localization error, confinement, and medium elasticity. Thus, under certain regimes, Cυ can be used as a diagnostic tool to identify the underlying mechanism of anomalous diffusion. Finally, we apply our analysis to experimental data sets of chromosomal loci and RNA-protein particles in Escherichia coli.

[1]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.

[2]  I. Tolic-Nørrelykke,et al.  Anomalous diffusion in living yeast cells. , 2004, Physical review letters.

[3]  Ralf Metzler,et al.  Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. , 2010, Physical chemistry chemical physics : PCCP.

[4]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[5]  J. Klafter,et al.  Probing microscopic origins of confined subdiffusion by first-passage observables , 2008, Proceedings of the National Academy of Sciences.

[6]  O. Espéli,et al.  DNA dynamics vary according to macrodomain topography in the E. coli chromosome , 2008, Molecular microbiology.

[7]  J. Käs,et al.  Apparent subdiffusion inherent to single particle tracking. , 2002, Biophysical journal.

[8]  R. Metzler,et al.  Random time-scale invariant diffusion and transport coefficients. , 2008, Physical review letters.

[9]  M. Saxton Two-dimensional continuum percolation threshold for diffusing particles of nonzero radius. , 2010, Biophysical journal.

[10]  E. Cox,et al.  Physical nature of bacterial cytoplasm. , 2006, Physical review letters.

[11]  Ralf Jungmann,et al.  Quantitative analysis of single particle trajectories: mean maximal excursion method. , 2010, Biophysical journal.

[12]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[13]  A. Berglund Statistics of camera-based single-particle tracking. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Jean-Christophe Olivo-Marin,et al.  SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope , 2006, Nature.

[15]  S. Havlin,et al.  Diffusion in disordered media , 1991 .

[16]  P. Doyle,et al.  Static and dynamic errors in particle tracking microrheology. , 2005, Biophysical journal.

[17]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[18]  Weihua Deng,et al.  ANALYSIS OF SINGLE PARTICLE TRAJECTORIES: FROM NORMAL TO ANOMALOUS DIFFUSION ∗ , 2009 .

[19]  E. Barkai,et al.  Ergodic properties of fractional Brownian-Langevin motion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  A. Caspi,et al.  Enhanced diffusion in active intracellular transport. , 2000, Physical review letters.

[21]  M. Saxton Anomalous diffusion due to obstacles: a Monte Carlo study. , 1994, Biophysical journal.

[22]  M. Saxton Anomalous diffusion due to binding: a Monte Carlo study. , 1996, Biophysical journal.

[23]  H. Qian,et al.  Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. , 1991, Biophysical journal.

[24]  Salman S Rogers,et al.  Intracellular microrheology of motile Amoeba proteus. , 2007, Biophysical journal.

[25]  Y. Garini,et al.  Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. , 2009, Physical review letters.

[26]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[27]  J. Theriot,et al.  Subdiffusive motion of a polymer composed of subdiffusive monomers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  W. E. Moerner,et al.  Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. , 2010, Nano letters.

[29]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[30]  I. Bronshtein,et al.  Ergodicity convergence test suggests telomere motion obeys fractional dynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Michael J. Saxton,et al.  SINGLE-PARTICLE TRACKING , 2009 .

[32]  J. Theriot,et al.  Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. , 2010, Physical review letters.

[33]  K. Luby-Phelps,et al.  Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. , 2000, International review of cytology.

[34]  R. Metzler,et al.  In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. , 2010, Physical review letters.

[35]  J. Klafter,et al.  Nonergodicity mimics inhomogeneity in single particle tracking. , 2008, Physical review letters.

[36]  J. Klafter,et al.  Fractional brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. , 2009, Physical review letters.

[37]  J. Theriot,et al.  Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes , 2006, Molecular microbiology.