Theory of Dynamical Systems and the Relations Between Classical and Quantum Mechanics

[1]  F. Guerra,et al.  Analytical estimate of stochasticity thresholds in Fermi-Pasta-Ulam and straight phi(4) models. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  L. Galgani,et al.  Planck's formula and glassy behavior in classical nonequilibrium statistical mechanics , 2000 .

[3]  Carati,et al.  Analog of Planck's formula and effective temperature in classical statistical mechanics far from equilibrium , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Giovanni Gallavotti,et al.  Statistical Mechanics: A Short Treatise , 1999 .

[5]  G. Hooft Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.

[6]  L. Galgani,et al.  On the Specific Heat of Fermi–Pasta–Ulam Systems and Their Glassy Behavior , 1999 .

[7]  Electrodynamics of helium with retardation and self-interaction effects , 1998 .

[8]  T. Paul,et al.  Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time , 1998, math-ph/9805018.

[9]  A. Carati Pair Production in Classical Electrodynamics , 1998 .

[10]  D. Bambusi,et al.  On classical electrodynamics of point particles and mass renormalization: Some preliminary results , 1996 .

[11]  G. Benettin,et al.  A rigorous implementation of the Jeans - Landau - Teller approximation for adiabatic invariants , 1995, chao-dyn/9509006.

[12]  Einstein–Podolsky–Rosen experiments , 1995 .

[13]  Antonio Giorgilli,et al.  On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates , 1992 .

[14]  G. Benettin,et al.  Classical “freezing” of fast rotations. A numerical test of the Boltzmann-Jeans conjecture , 1991 .

[15]  F. Guerra,et al.  Classical electrodynamics as a nonlinear dynamical system , 1989 .

[16]  Antonio Giorgilli,et al.  Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part II , 1987 .

[17]  Antonio Giorgilli,et al.  Exponential law for the equipartition times among translational and vibrational degrees of freedom , 1987 .

[18]  S. Albeverio,et al.  Stochastic Processes in Classical and Quantum Systems , 1986 .

[19]  J. Jäckle,et al.  Models of the glass transition , 1986 .

[20]  Nagel,et al.  Specific-heat spectroscopy of the glass transition. , 1985, Physical review letters.

[21]  G. Benettin,et al.  Boltzmann's ultraviolet cutoff and Nekhoroshev's theorem on Arnold diffusion , 1984, Nature.

[22]  L. Galgani,et al.  Planck-like Distributions in Classical Nonlinear Mechanics , 1972 .

[23]  L. Galgani,et al.  Recent progress in classical nonlinear dynamics , 1972 .

[24]  L. Galgani,et al.  Zero-point energy in classical non-linear mechanics☆ , 1972 .

[25]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[26]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[27]  Albert Einstein,et al.  Zum gegenwärtigen Stand des Strahlungsproblems , 1909 .

[28]  L. Boltzmann On Certain Questions of the Theory of Gases , 1895, Nature.