Three‐Dimensionally Ordered Gold Nanocrystal/Silica Superlattice Thin Films Synthesized via Sol–Gel Self‐Assembly

Nanocrystals and their ordered arrays hold many important applications in fields such as catalysis, surface-enhanced Rainan spectroscopy based sensors, memory storage, and electronic and optical nanodevices. Herein, a simple and general method to synthesize ordered, three-dimensional, transparent gold nanocrystal/silica superlattice thin films by self-assembly of gold nano crystal micelles with silica or organosilsesquioxane by spin-coating is reported. The self-assembly process is conducted under acidic sol-gel conditions (ca. pH2), ensuring spin-solution homogeneity and stability and facilitating the formation of ordered and transparent gold nanocrystal/silica films. The monodisperse nanocrystals are organized within inorganic host matrices as a face-centered cubic mesostructure, and characterized by transmission electron spectroscopy and X-ray diffraction.

[1]  K. Philippot,et al.  In situ formation of gold nanoparticles within functionalised ordered mesoporous silica via an organometallic ‘chimie douce’ approach , 2001 .

[2]  Pierre M. Petroff,et al.  Generalized synthesis of periodic surfactant/inorganic composite materials , 1994, Nature.

[3]  R. Haddad,et al.  Ordered Two‐ and Three‐Dimensional Arrays Self‐Assembled from Water‐Soluble Nanocrystal–Micelles , 2005 .

[4]  Richard J. Saykally,et al.  Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition , 1997 .

[5]  B. Korgel,et al.  Temperature-Dependent Electron Transport through Silver Nanocrystal Superlattices , 2001 .

[6]  R. P. Andres,et al.  Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters , 1996, Science.

[7]  M. A. El Khakani,et al.  Electrical switching in sol–gel derived Ag–SiO2 nanocomposite thin films , 2005 .

[8]  Michael C. Wilson,et al.  Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. , 2005, Nano letters (Print).

[9]  Shaowei Chen,et al.  Langmuir−Blodgett Fabrication of Two-Dimensional Robust Cross-Linked Nanoparticle Assemblies , 2001 .

[10]  A. Rogach,et al.  A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three‐Dimensional Superlattices , 2001 .

[11]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[12]  C. Brinker,et al.  Synthesis of organo-silane functionalized nanocrystal micelles and their self-assembly. , 2005, Journal of the American Chemical Society.

[13]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[14]  Klavs F. Jensen,et al.  Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer Composites , 2000 .

[15]  B. Korgel,et al.  Metal nanocrystal superlattice nucleation and growth. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  Mauro Epifani,et al.  Sol–Gel Synthesis and Characterization of Ag and Au Nanoparticles in SiO2, TiO2, and ZrO2 Thin Films , 2004 .

[17]  Yunfeng Lu,et al.  Rapid prototyping of patterned functional nanostructures , 2000, Nature.

[18]  C. Brinker,et al.  Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality , 2000 .

[19]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[20]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[21]  Zhong Lin Wang Structural Analysis of Self-Assembling Nanocrystal Superlattices , 1998 .

[22]  H. Fan,et al.  Stepwise assembly in three dimensions: Preparation and characterization of layered gold nanoparticles in porous silica matrices , 1997 .

[23]  N. Sugimoto,et al.  Template synthesis of nanoparticle arrays of gold, platinum and palladium in mesoporous silica films and powders , 2004 .

[24]  M. Fröba,et al.  Ordered arrays of II/VI diluted magnetic semiconductor quantum wires: formation within mesoporous MCM-41 silica. , 2002, Chemistry.

[25]  Andreas Kornowski,et al.  CdSe and CdSe/CdS nanorod solids. , 2004, Journal of the American Chemical Society.

[26]  Hao Zeng,et al.  Exchange-coupled nanocomposite magnets by nanoparticle self-assembly , 2002, Nature.

[27]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[28]  R L Sandstrom,et al.  Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. , 2000, Science.

[29]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[30]  D W Bennett,et al.  Molecular Wires, Switches, and Memories , 2002, Annals of the New York Academy of Sciences.

[31]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[32]  C. Brinker,et al.  Self-Assembly of Ordered, Robust, Three-Dimensional Gold Nanocrystal/Silica Arrays , 2004, Science.

[33]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[34]  G. Whitesides,et al.  Unconventional Methods for Fabricating and Patterning Nanostructures. , 1999, Chemical reviews.

[35]  A. Malko,et al.  High‐Performance, Quantum Dot Nanocomposites for Nonlinear Optical and Optical Gain Applications , 2003 .

[36]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[37]  Emission of Bright Blue Light from Mesoporous Silica with Dense Si (Ge) Nanocrystals , 2005 .

[38]  B. Korgel,et al.  “Melting Transition” of a Quantum Dot Solid: Collective Interactions Influence the Thermally-Induced Order−Disorder Transition of a Silver Nanocrystal Superlattice , 1999 .

[39]  M. Pileni,et al.  Nanocrystal Self-Assemblies: Fabrication and Collective Properties , 2001 .

[40]  M. Maye,et al.  Heating-Induced Evolution of Thiolate-Encapsulated Gold Nanoparticles: A Strategy for Size and Shape Manipulations , 2000 .

[41]  K. Philippot,et al.  In situ formation of gold nanoparticles within thiol functionalized HMS-C16 and SBA-15 type materials via an organometallic two-step approach , 2003 .

[42]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[43]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[44]  P. Albouy,et al.  Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals , 2005, Nature materials.

[45]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .