Tutorial on Admissible Rules in Gudauri
暂无分享,去创建一个
[1] Rosalie Iemhoff,et al. Proof theory for admissible rules , 2009, Ann. Pure Appl. Log..
[2] A. Slisenko. Studies in constructive mathematics and mathematical logic , 1969 .
[3] Vladimir V. Rybakov,et al. Writing out Unifiers in Linear Temporal Logic , 2012, J. Log. Comput..
[4] Emil Jerábek,et al. Complexity of admissible rules , 2007, Arch. Math. Log..
[5] Katarzyna Slomczynska. Algebraic semantics for the (↔, ¬¬)-fragment of IPC , 2012, Math. Log. Q..
[6] Emil Jerábek,et al. Blending margins: the modal logic K has nullary unification type , 2015, J. Log. Comput..
[7] Rosalie Iemhoff,et al. Unification in fragments of intermediate logics , 2012 .
[8] Piotr Wojtylak. On a Problem of H. Friedman and its Solution by T. Prucnal , 2004, Reports Math. Log..
[9] Tadeusz Prucnal,et al. Structural completeness of the first-order predicate calculus , 1975, Math. Log. Q..
[10] Vladimir V. Rybakov,et al. Linear Temporal Logic LTL: Basis for Admissible Rules , 2011, J. Log. Comput..
[11] Albert Visser. Substitutions of Sigma10 - sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic , 2002, Ann. Pure Appl. Log..
[12] Silvio Ghilardi,et al. A Resolution/Tableaux Algorithm for Projective Approximations in IPC , 2002, Log. J. IGPL.
[13] Robert K. Meyer,et al. A Structurally Complete Fragment of Relevant Logic , 1992, Notre Dame J. Formal Log..
[14] Petr Cintula,et al. Admissible rules in the implication-negation fragment of intuitionistic logic , 2010, Ann. Pure Appl. Log..
[15] Rosalie Iemhoff,et al. Hypersequent Systems for the Admissible Rules of Modal and Intermediate Logics , 2008, LFCS.
[16] G. Mints,et al. Derivability of admissible rules , 1976 .
[17] Jeroen P. Goudsmit,et al. On unification and admissible rules in Gabbay-de Jongh logics , 2014, Ann. Pure Appl. Log..
[18] Tadeusz Prucnal. On the structural completeness of some pure implicational propositional calculi , 1972 .
[19] Vladimir V. Rybakov,et al. Unification and admissible rules for paraconsistent minimal Johanssons' logic J and positive intuitionistic logic IPC+ , 2013, Ann. Pure Appl. Log..
[20] A. V. Chagrov. Decidable modal logic with undecidable admissibility problem , 1992 .
[21] Mircea Tirnoveanu,et al. Review: W. A. Pogorzelski, Structural Completeness of the Propositional Calculus , 1975 .
[22] Emil Jerábek,et al. Admissible Rules of Modal Logics , 2005, J. Log. Comput..
[23] Silvio Ghilardi,et al. Unification, finite duality and projectivity in varieties of Heyting algebras , 2004, Ann. Pure Appl. Log..
[24] Emil Jevr'abek. Blending margins: The modal logic K has nullary unification type , 2011 .
[25] Tomasz F. Skura. A COMPLETE SYNTACTICAL CHARACTERIZATION OF THE INTUITIONISTIC LOGIC , 2006 .
[26] Frank Wolter,et al. Undecidability of the unification and admissibility problems for modal and description logics , 2006, TOCL.
[27] Wojciech Dzik,et al. Structural completeness of Gödel's and Dummett's propositional calculi , 1973 .
[28] Vladimir V. Rybakov,et al. Rules admissible in transitive temporal logic TS4, sufficient condition , 2010, Theor. Comput. Sci..
[29] Timothy Williamson,et al. An Alternative Rule of disjunction in modal logic , 1991, Notre Dame J. Formal Log..
[30] Silvio Ghilardi,et al. Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.
[31] Albert Visser,et al. Rules and Arithmetics , 1998, Notre Dame J. Formal Log..
[32] Vladimir V. Rybakov,et al. Admissibility of Logical Inference Rules , 2011 .
[33] Paul Roziere. Regles admissibles en calcul propositionnel intuitionniste , 1992 .
[34] Orna Grumberg,et al. A game-based framework for CTL counterexamples and 3-valued abstraction-refinement , 2007, TOCL.
[35] Arnon Avron,et al. Simple Consequence Relations , 1988, Inf. Comput..
[36] Günter Asser,et al. Zeitschrift für mathematische Logik und Grundlagen der Mathematik , 1955 .
[37] Rosalie Iemhoff,et al. Intermediate Logics and Visser's Rules , 2005, Notre Dame J. Formal Log..