Compact stars with dark energy in general relativity and modified gravity

[1]  J. Glicenstein,et al.  Search for Periodicities in High Energy AGNs with a Time Domain Approach , 2022, The Astrophysical Journal.

[2]  V. Oikonomou,et al.  Neutron stars phenomenology with scalar–tensor inflationary attractors , 2021, Physics of the Dark Universe.

[3]  S. Capozziello,et al.  Causal limit of neutron star maximum mass in f(R) gravity in view of GW190814 , 2021, 2103.04144.

[4]  K. Dimopoulos Introduction to Cosmic Inflation and Dark Energy , 2020 .

[5]  M. Malheiro,et al.  Neutron stars in f(ℛ,T) gravity using realistic equations of state in the light of massive pulsars and GW170817 , 2020, Journal of Cosmology and Astroparticle Physics.

[6]  S. Capozziello,et al.  Extended gravity description for the GW190814 supermassive neutron star , 2020, 2008.10884.

[7]  J. Kunz,et al.  Ultra-long-lived quasi-normal modes of neutron stars in massive scalar-tensor gravity , 2020, EPL (Europhysics Letters).

[8]  A. Astashenok,et al.  Supermassive neutron stars in axion F(R) gravity , 2020, 2001.08504.

[9]  D. Rubiera-García,et al.  Stellar structure models in modified theories of gravity: Lessons and challenges , 2019, Physics Reports.

[10]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[11]  V. Oikonomou,et al.  Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.

[12]  E. Berti,et al.  Tensor-multi-scalar theories: relativistic stars and 3 + 1 decomposition , 2015, 1505.07462.

[13]  C. Providência,et al.  Hyperons in neutron star matter within relativistic mean-field models , 2014, Physics of Particles and Nuclei.

[14]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[15]  Diego Sáez-Chillón Gómez,et al.  Black Holes, Cosmological Solutions, Future Singularities, and Their Thermodynamical Properties in Modified Gravity Theories , 2012, Entropy.

[16]  S. Capozziello,et al.  Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests , 2012, 1205.3421.

[17]  George Ellis,et al.  Does the growth of structure affect our dynamical models of the Universe? The averaging, backreaction, and fitting problems in cosmology , 2011, 1109.2314.

[18]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[19]  Miao 淼 Li 李,et al.  Dark Energy , 2011, Dialogue: A Journal of Mormon Thought.

[20]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[21]  S. Capozziello,et al.  Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics , 2010 .

[22]  S. Ransom,et al.  Shapiro delay measurement of a two solar mass neutron star , 2010, 1010.5788.

[23]  K. Ekşi,et al.  Constraints on perturbative f(R) gravity via neutron stars , 2010, 1003.3179.

[24]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[25]  N. Stergioulas Rotating Stars in Relativity , 1998, Living reviews in relativity.

[26]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[27]  Y. Simonov The quark compound bag model and the Jaffe-low P-matrix , 1981 .

[28]  M. Livio,et al.  Telescope: Evidence for past Deceleration and Constraints on Dark Energy Evolution , 2022 .

[29]  ournal of C osmology and A stroparticle hysics Extreme neutron stars from Extended Theories of Gravity , 2022 .