Congenital visual pathway abnormalities: a window onto cortical stability and plasticity

Sensory systems project information in a highly organized manner to the brain, where it is preserved in maps of the sensory structures. These sensory projections are altered in congenital abnormalities, such as anophthalmia, albinism, achiasma, and hemihydranencephaly. Consequently, these abnormalities, profoundly affect the organization of the visual system. Surprisingly, visual perception remains largely intact, except for anophthalmia. Recent brain imaging advances shed light on the mechanisms that underlie this phenomenon. In contrast to animal models, in humans the plasticity of thalamocortical connections appears limited, thus demonstrating the importance of cortical adaptations. We suggest that congenital visual pathway abnormalities provide a valuable model to investigate the principles of plasticity that make visual representations available for perception and behavior in humans.

[1]  L. Bour,et al.  Isolated absence of optic chiasm revealed by congenital nystagmus, MRI and VEPs. , 2003, Neuropediatrics.

[2]  G. Porro,et al.  Development of visual function in hemihydranencephaly , 1998, Developmental medicine and child neurology.

[3]  Punita Bhansali,et al.  Eye-Specific Projections of Retinogeniculate Axons Are Altered in Albino Mice , 2012, The Journal of Neuroscience.

[4]  K. Hoffmann,et al.  Visual field defects in albino ferrets (Mustela putorius furo) , 2003, Vision Research.

[5]  Y. Sugita Global plasticity in adult visual cortex following reversal of visual input , 1996, Nature.

[6]  Frans W Cornelissen,et al.  Large-scale remapping of visual cortex is absent in adult humans with macular degeneration , 2011, Nature Neuroscience.

[7]  Jens M. Rick,et al.  belladonna/(lhx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain , 2006, Development.

[8]  C. Bockisch,et al.  Positive or negative feedback of optokinetic signals: degree of the misrouted optic flow determines system dynamics of human ocular motor behavior. , 2014, Investigative ophthalmology & visual science.

[9]  B. Wandell,et al.  Cortical Maps and White Matter Tracts following Long Period of Visual Deprivation and Retinal Image Restoration , 2010, Neuron.

[10]  Lars Muckli,et al.  Bilateral visual field maps in a patient with only one hemisphere , 2009, Proceedings of the National Academy of Sciences.

[11]  Jodie Davies-Thompson,et al.  Functional organisation of visual pathways in a patient with no optic chiasm , 2012, Neuropsychologia.

[12]  Serge O Dumoulin,et al.  Congenital achiasma and see-saw nystagmus in VACTERL syndrome. , 2010, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[13]  Nicola Filippini,et al.  Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex. , 2012, Brain : a journal of neurology.

[14]  S. Cajal Texture of the nervous system of man and the vertebrates , 2000 .

[15]  S. Guerriero,et al.  Bilateral Microphthalmia with Optic Nerve Hypoplasia and Achiasmia. , 2010, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[16]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[17]  Brian A. Wandell Development and Plasticity in Visual Cortex , 2004, VMV.

[18]  John Bradbury,et al.  A new recessively inherited disorder composed of foveal hypoplasia, optic nerve decussation defects and anterior segment dysgenesis maps to chromosome 16q23.3-24.1 , 2013, Molecular vision.

[19]  Christopher D. Chambers,et al.  Cortical plasticity in the face of congenitally altered input into V1 , 2012, Cortex.

[20]  G E Holder,et al.  Abnormal visual projection in a human albino studied with functional magnetic resonance imaging and visual evoked potentials , 2002, Journal of neurology, neurosurgery, and psychiatry.

[21]  Myers Re Cerebral ischemia in the developing primate fetus. , 1989 .

[22]  F. Tremblay,et al.  Visual evoked potentials with crossed asymmetry in incomplete congenital stationary night blindness. , 1996, Investigative ophthalmology & visual science.

[23]  B. Wandell,et al.  Functional organization of human occipital-callosal fiber tracts. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Hoffmann,et al.  Self-organisation in the human visual system—Visuo-motor processing with congenitally abnormal V1 input , 2010, Neuropsychologia.

[25]  Ione Fine,et al.  Serveur Académique Lausannois SERVAL serval.unil.ch , 2022 .

[26]  P. Sinha,et al.  Superimposed Hemifields in Primary Visual Cortex of Achiasmic Individuals , 2012, Neuron.

[27]  Andrea N. Grant,et al.  Do hemifield representations co-opt ocular dominance column structure in achiasma? , 2014 .

[28]  L. Montoliu,et al.  Ectopic expression of tyrosine hydroxylase in the pigmented epithelium rescues the retinal abnormalities and visual function common in albinos in the absence of melanin , 2006, Journal of neurochemistry.

[29]  Punita Bhansali,et al.  Delayed neurogenesis leads to altered specification of ventrotemporal retinal ganglion cells in albino mice , 2014, Neural Development.

[30]  Tatsuji Inouye,et al.  Die Sehstörungen bei Schußverletzungen der kortikalen Sehsphäre : nach Beobachtungen an Verwundeten der letzten japanischen Kriege , 1909 .

[31]  L. Bour,et al.  Non-decussating retinal-fugal fibre syndrome. An inborn achiasmatic malformation associated with visuotopic misrouting, visual evoked potential ipsilateral asymmetry and nystagmus. , 1995, Brain : a journal of neurology.

[32]  B. Tjan,et al.  Visual cortex representation of achiasmic retinal inputs , 2012 .

[33]  Michael B Hoffmann,et al.  Identifying human albinism: a comparison of VEP and fMRI. , 2008, Investigative ophthalmology & visual science.

[34]  M. Hoffmann,et al.  Multifocal visual evoked potentials reveal normal optic nerve projections in human carriers of oculocutaneous albinism type 1a. , 2008, Investigative ophthalmology & visual science.

[35]  B. Wandell,et al.  V1 projection zone signals in human macular degeneration depend on task, not stimulus. , 2008, Cerebral cortex.

[36]  Mary M. Conte,et al.  Visual function and brain organization in non-decussating retinal-fugal fibre syndrome. , 2000, Cerebral cortex.

[37]  Kevin P. Moloney,et al.  Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration. , 2008, Restorative neurology and neuroscience.

[38]  R. Kelsh,et al.  Do you have to be albino to be albino? , 2014, Pigment cell & melanoma research.

[39]  Eberhart Zrenner,et al.  Fighting Blindness with Microelectronics , 2013, Science Translational Medicine.

[40]  Jianhua Cang,et al.  Critical Period Plasticity Matches Binocular Orientation Preference in the Visual Cortex , 2010, Neuron.

[41]  B. Lorenz,et al.  Assessment of cortical visual field representations with multifocal VEPs in control subjects, patients with albinism, and female carriers of ocular albinism. , 2006, Investigative ophthalmology & visual science.

[42]  M. Ruggieri,et al.  Hemihydranencephaly: living with half brain dysfunction , 2013, Italian Journal of Pediatrics.

[43]  D. Fitzpatrick,et al.  The genetic architecture of microphthalmia, anophthalmia and coloboma. , 2014, European journal of medical genetics.

[44]  G. Jandó,et al.  Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans , 2012, Proceedings of the National Academy of Sciences.

[45]  Georgios A Keliris,et al.  Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects , 2014, Proceedings of the National Academy of Sciences.

[46]  Birgit Lorenz,et al.  Misrouting of the optic nerves in albinism: estimation of the extent with visual evoked potentials. , 2005, Investigative ophthalmology & visual science.

[47]  B. Ekesten,et al.  Achiasmia and unilateral optic nerve hypoplasia in an otherwise healthy infant. , 2005, Acta ophthalmologica Scandinavica.

[48]  M. Stryker,et al.  Ephrin-As Guide the Formation of Functional Maps in the Visual Cortex , 2005, Neuron.

[49]  Kathleen A. Marshall,et al.  The human visual cortex responds to gene therapy-mediated recovery of retinal function. , 2011, The Journal of clinical investigation.

[50]  B. Weber,et al.  Novel and recurrent mutations in the tyrosinase gene and the P gene in the German albino population , 1999, Human Genetics.

[51]  C. Mason,et al.  Zic2 Regulates Retinal Ganglion Cell Axon Avoidance of ephrinB2 through Inducing Expression of the Guidance Receptor EphB1 , 2008, The Journal of Neuroscience.

[52]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[53]  Michael B Hoffmann,et al.  Perceptual relevance of abnormal visual field representations: static visual field perimetry in human albinism , 2007, British Journal of Ophthalmology.

[54]  A. Leventhal,et al.  Retinal projections and functional architecture of cortical areas 17 and 18 in the tyrosinase-negative albino cat , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  R. W. Guillery,et al.  Neural abnormalities of albinos , 1986, Trends in Neurosciences.

[56]  M. Stryker,et al.  Development and Plasticity of the Primary Visual Cortex , 2012, Neuron.

[57]  A. Cowey,et al.  Imaging studies in congenital anophthalmia reveal preservation of brain architecture in 'visual' cortex. , 2009, Brain : a journal of neurology.

[58]  F. Riemslag,et al.  Chiasmal misrouting and foveal hypoplasia without albinism , 2006, British Journal of Ophthalmology.

[59]  Cerebral ischemia in the developing primate fetus. , 1989, Biomedica biochimica acta.

[60]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  E. L. Schwartz,et al.  Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception , 1977, Biological Cybernetics.

[62]  Brian A. Wandell,et al.  Plasticity and stability of visual field maps in adult primary visual cortex , 2009, Nature Reviews Neuroscience.

[63]  Satoru Miyauchi,et al.  Task-dependent V1 responses in human retinitis pigmentosa. , 2010, Investigative ophthalmology & visual science.

[64]  A. Weiss,et al.  Anatomic features and function of the macula and outcome of surgical tenotomy and reattachment in achiasma. , 2013, Ophthalmology.

[65]  Robert W. Williams,et al.  Target recognition and visual maps in the thalamus of achiasmatic dogs , 1994, Nature.

[66]  Oliver Speck,et al.  Impact of chiasma opticum malformations on the organization of the human ventral visual cortex , 2014, Human brain mapping.

[67]  C. Mason,et al.  Zic2 promotes axonal divergence at the optic chiasm midline by EphB1-dependent and -independent mechanisms , 2008, Development.

[68]  Wei Li,et al.  Increasing the complexity: new genes and new types of albinism , 2014, Pigment cell & melanoma research.

[69]  M. Crair,et al.  Retinal waves coordinate patterned activity throughout the developing visual system , 2012, Nature.

[70]  C. Holt,et al.  Ephrin-B2 and EphB1 Mediate Retinal Axon Divergence at the Optic Chiasm , 2003, Neuron.

[71]  H. Bridge,et al.  Changes in brain morphology in albinism reflect reduced visual acuity , 2014, Cortex.

[72]  A. Moore,et al.  Is Optic Nerve Fibre Mis-Routing a Feature of Congenital Stationary Night Blindness? , 2005, Documenta Ophthalmologica.

[73]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[74]  Koen V. Haak,et al.  Cortical connective field estimates from resting state fMRI activity , 2014, Front. Neurosci..

[75]  D. Davies,et al.  ANOPHTHALMIA AND MICROPHTHALMIA , 1917, The British journal of ophthalmology.

[76]  A. Leventhal,et al.  Abnormal retinotopic organization of the dorsal lateral geniculate nucleus of the tyrosinase‐negative albino cat , 2000, The Journal of comparative neurology.

[77]  Glen Jeffery,et al.  Early midline interactions are important in mouse optic chiasm formation but are not critical in man: a significant distinction between man and mouse , 2006, The European journal of neuroscience.

[78]  R A Clement,et al.  The achiasmia spectrum: congenitally reduced chiasmal decussation , 2005, British Journal of Ophthalmology.

[79]  R W Guillery,et al.  Abnormal central visual pathways in the brain of an albino green monkey (Cercopithecus aethiops) , 1984, The Journal of comparative neurology.

[80]  Glen Jeffery,et al.  Retinal abnormalities in human albinism translate into a reduction of grey matter in the occipital cortex , 2005, The European journal of neuroscience.

[81]  Andrew S. Bock,et al.  Visual callosal topography in the absence of retinal input , 2013, NeuroImage.

[82]  B. Stirn-Kranjc,et al.  VEP asymmetry with ophthalmological and MRI findings in two achiasmatic children , 2007, Documenta Ophthalmologica.

[83]  H Spekreijse,et al.  A decisive electrophysiological test for human albinism. , 1983, Electroencephalography and clinical neurophysiology.

[84]  G. Jeffery,et al.  Retinal mitosis is regulated by dopa, a melanin precursor that may influence the time at which cells exit the cell cycle: Analysis of patterns of cell production in pigmented and albino retinae , 1999, The Journal of comparative neurology.

[85]  M. Bach,et al.  Optic nerve projections in patients with primary ciliary dyskinesia. , 2011, Investigative ophthalmology & visual science.

[86]  R. Hertle,et al.  Clinical, radiographic, and electrophysiologic findings in patients with achiasma or hypochiasma , 2001 .

[87]  Herbert Jägle,et al.  Reorganization of human cortical maps caused by inherited photoreceptor abnormalities , 2002, Nature Neuroscience.

[88]  Pierre Vanderhaeghen,et al.  Mapping Labels in the Human Developing Visual System and the Evolution of Binocular Vision , 2005, The Journal of Neuroscience.

[89]  Michael B Hoffmann,et al.  Organization of the Visual Cortex in Human Albinism , 2003, The Journal of Neuroscience.

[90]  John Bradbury,et al.  Recessive mutations in SLC38A8 cause foveal hypoplasia and optic nerve misrouting without albinism. , 2013, American journal of human genetics.

[91]  S. Dehaene,et al.  The Number Sense: How the Mind Creates Mathematics. , 1998 .

[92]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[93]  M. Feller,et al.  Mechanisms underlying development of visual maps and receptive fields. , 2008, Annual review of neuroscience.

[94]  Santiago Ramón y Cajal,et al.  Texture of the Nervous System of Man and the Vertebrates , 1999, Springer Vienna.

[95]  Brian A. Wandell,et al.  Plasticity and Stability of the Visual System in Human Achiasma , 2012, Neuron.

[96]  M. Greenlee,et al.  Neural correlates of visual search in patients with hereditary retinal dystrophies , 2013, Human brain mapping.

[97]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[98]  Daniel D. Dilks,et al.  Reorganization of visual processing in macular degeneration: Replication and clues about the role of foveal loss , 2008, Vision Research.

[99]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[100]  Amir Amedi,et al.  Visual Cortex Extrastriate Body-Selective Area Activation in Congenitally Blind People “Seeing” by Using Sounds , 2014, Current Biology.

[101]  Carol A. Mason,et al.  Retinal axon growth at the optic chiasm: to cross or not to cross. , 2008, Annual review of neuroscience.

[102]  G. Vezina,et al.  Isolated absence of the optic chiasm: a rare cause of congenital nystagmus. , 2007, AJNR. American journal of neuroradiology.

[103]  Amir Amedi,et al.  Reading with Sounds: Sensory Substitution Selectively Activates the Visual Word Form Area in the Blind , 2012, Neuron.

[104]  A. Cowey,et al.  Early Auditory Processing in Area V5/MT+ of the Congenitally Blind Brain , 2013, The Journal of Neuroscience.

[105]  H. Spekreijse,et al.  Evoked potentials in albinos: efficacy of pattern stimuli in detecting misrouted optic fibers. , 1981, Electroencephalography and clinical neurophysiology.

[106]  D. Burr,et al.  A Visual Sense of Number , 2007, Current Biology.

[107]  Malcolm C. Brown,et al.  Congenital absence of optic chiasm: demonstration of an uncrossed visual pathway using monocular flash visual evoked potentials , 2006, Documenta Ophthalmologica.

[108]  Omar H. Butt,et al.  The Fine-Scale Functional Correlation of Striate Cortex in Sighted and Blind People , 2013, The Journal of Neuroscience.

[109]  P Apkarian,et al.  A Unique Achiasmatic Anomaly Detected in Non‐albinos with Misrouted Retinal‐fugal Projections , 1994, The European journal of neuroscience.

[110]  Michael B Hoffmann,et al.  Pigmentation predicts the shift in the line of decussation in humans with albinism , 2007, The European journal of neuroscience.

[111]  G. Henry,et al.  Differences between the visual fields of Siamese and common cats. , 1973, Vision research.

[112]  G. Jeffery,et al.  Delayed neurogenesis in the albino retina: evidence of a role for melanin in regulating the pace of cell generation. , 1996, Brain research. Developmental brain research.

[113]  B. Stirn-Kranjc,et al.  VEP characteristics in children with achiasmia, in comparison to albino and healthy children , 2012, Documenta Ophthalmologica.