PII signal transduction proteins.

PII proteins, found in Bacteria, Archaea and plants, help coordinate carbon and nitrogen assimilation by regulating the activity of signal transduction enzymes in response to diverse signals. Recent studies of bacterial PII proteins have revealed a solution to the signal transduction problem of how to coordinate multiple receptors in response to diverse stimuli yet permit selective control of these receptors under various conditions and allow adaptation of the system as a whole to long-term stimulation.

[1]  A. Ninfa,et al.  Structure/function analysis of the PII signal transduction protein of Escherichia coli: genetic separation of interactions with protein receptors , 1997, Journal of bacteriology.

[2]  S. Kustu,et al.  Role of integration host factor in stimulating transcription from the sigma 54-dependent nifH promoter. , 1992, Journal of molecular biology.

[3]  K. Forchhammer,et al.  The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status , 1994, Journal of bacteriology.

[4]  H. Westerhoff,et al.  The genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli , 1993, Molecular microbiology.

[5]  A. Ninfa,et al.  Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. , 1998, Biochemistry.

[6]  D. Kaiser Cell fate and organogenesis in bacteria. , 1999, Trends in genetics : TIG.

[7]  M. Merrick,et al.  The Signal Transduction Protein GlnK Is Required for NifL-Dependent Nitrogen Control of nif Gene Expression in Klebsiella pneumoniae , 1999, Journal of bacteriology.

[8]  M. R. Atkinson,et al.  The nitrogen-regulated Bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glnB-encoded PII protein , 1994, Journal of bacteriology.

[9]  B. Shapiro Glutamine synthetase deadenylylating enzyme system from Escherichia coli. Resolution into two components, specific nucleotide stimulation, and cofactor requirements , 1969 .

[10]  Alexander J. Ninfa,et al.  Regulation of Autophosphorylation ofEscherichia coli Nitrogen Regulator II by the PII Signal Transduction Protein , 1999, Journal of bacteriology.

[11]  W. Gu,et al.  Role of nitrogen regulator I (NtrC), the transcriptional activator of glnA in enteric bacteria, in reducing expression of glnA during nitrogen-limited growth , 1992, Journal of bacteriology.

[12]  B. Magasanik,et al.  Activation of the dephosphorylation of nitrogen regulator I-phosphate of Escherichia coli , 1995, Journal of bacteriology.

[13]  A. Wedel,et al.  A bacterial enhancer functions to tether a transcriptional activator near a promoter. , 1990, Science.

[14]  K. Forchhammer,et al.  Dephosphorylation of the phosphoprotein PII in Synechococcus PCC 7942: identification of an ATP and 2‐oxoglutarate‐regulated phosphatase activity , 1997, Molecular microbiology.

[15]  Probing interactions of the homotrimeric PII signal transduction protein with its receptors by use of PII heterotrimers formed in vitro from wild-type and mutant subunits , 1997, Journal of bacteriology.

[16]  A. Ninfa,et al.  Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulator II (NRII or NtrB) , 1993, Journal of bacteriology.

[17]  A. Pühler,et al.  Tight linkage of glnA and a putative regulatory gene in Rhizobium leguminosarum. , 1987, Nucleic acids research.

[18]  A. Ninfa,et al.  Reversible uridylylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NtrC). , 1994, The Journal of biological chemistry.

[19]  C. Toniolo,et al.  The polypeptide 310-helix. , 1991, Trends in biochemical sciences.

[20]  N. Tsinoremas,et al.  Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the glnB gene product. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Aubert,et al.  Nucleotide sequence of nifH regions from Methanobacterium ivanovii and Methanosarcina barkeri 227 and characterization of glnB-like genes. , 1991, Research in microbiology.

[22]  A. Ninfa,et al.  The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. , 1998, Biochemistry.

[23]  A. Ninfa,et al.  Characterization of the GlnK protein of Escherichia coli , 1999, Molecular microbiology.

[24]  B. Magasanik,et al.  Isolation of the nitrogen assimilation regulator NR(I), the product of the glnG gene of Escherichia coli. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Ninfa,et al.  Activation of transcription initiation from the nac promoter of Klebsiella aerogenes , 1995, Journal of bacteriology.

[26]  A. Ninfa,et al.  Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli , 1998, Molecular microbiology.

[27]  F. Tabita,et al.  Expression of glnB and aglnB-Like Gene (glnK) in a Ribulose Bisphosphate Carboxylase/Oxygenase-Deficient Mutant of Rhodobacter sphaeroides , 1998, Journal of bacteriology.

[28]  A. Ninfa,et al.  Physiological Role for the GlnK Protein of Enteric Bacteria: Relief of NifL Inhibition under Nitrogen-Limiting Conditions , 1998, Journal of bacteriology.

[29]  V. Weiss,et al.  Heterotrimerization of PII‐like signalling proteins: implications for PII‐mediated signal transduction systems , 1999, Molecular microbiology.

[30]  E. Stadtman,et al.  Regulation of glutamine synthetase. VII. Adenylyl glutamine synthetase: a new form of the enzyme with altered regulatory and kinetic properties. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Daniel Kahn,et al.  An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli , 1996, Molecular microbiology.

[32]  K. Forchhammer,et al.  Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: analysis of in vitro kinase activity , 1995, Journal of bacteriology.

[33]  A. Ninfa,et al.  The Escherichia coli PII Signal Transduction Protein Is Activated upon Binding 2-Ketoglutarate and ATP (*) , 1995, The Journal of Biological Chemistry.

[34]  G. Coruzzi,et al.  A PII-like protein in Arabidopsis: putative role in nitrogen sensing. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  The glnB region of the Escherichia coli chromosome , 1993, Journal of bacteriology.

[36]  Y. Churin,et al.  Nucleotide sequence and characterization of the Rhodobacter sphaeroides glnB and glnA genes. , 1994, Microbiology.

[37]  A. Ninfa,et al.  Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers , 1987, Cell.

[38]  A. Ninfa,et al.  Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[39]  E. Stadtman,et al.  Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli. , 1967, Archives of biochemistry and biophysics.

[40]  A. Ninfa,et al.  Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli. , 1998, Biochemistry.

[41]  H V Westerhoff,et al.  GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition. , 1998, Journal of molecular biology.

[42]  Repression of the Klebsiella aerogenes nac promoter , 1995, Journal of bacteriology.

[43]  Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. , 1999, FEMS microbiology letters.

[44]  D. Ollis,et al.  Structure of the Escherichia coli signal transducing protein PII. , 1994, Structure.

[45]  S. Kustu,et al.  In vitro transcription of the nitrogen fixation regulatory operon nifLA of Klebsiella pneumoniae , 1987, Journal of bacteriology.

[46]  P. Senior,et al.  Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique , 1975, Journal of Bacteriology.

[47]  E. Stadtman,et al.  Regulation of glutamine synthetase adenylylation and deadenylylation by the enzymatic uridylylation and deuridylylation of the PII regulatory protein. , 1973, Archives of biochemistry and biophysics.